Skip to content
Snippets Groups Projects
Commit 6c762d38 authored by Pietro Incardona's avatar Pietro Incardona
Browse files

Adding equation unit test

parent a74e6600
No related branches found
No related tags found
No related merge requests found
/*
* eq_unit_test.hpp
*
* Created on: Oct 13, 2015
* Author: i-bird
*/
#ifndef OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_
#define OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include "Laplacian.hpp"
#include "FiniteDifference/eq.hpp"
#include "FiniteDifference/sum.hpp"
#include "FiniteDifference/mul.hpp"
#include "Grid/grid_dist_id.hpp"
#include "Decomposition/CartDecomposition.hpp"
#include "Vector/Vector.hpp"
#include "Solvers/umfpack_solver.hpp"
#include "data_type/aggregate.hpp"
#include "FiniteDifference/FDScheme.hpp"
constexpr unsigned int x = 0;
constexpr unsigned int y = 1;
constexpr unsigned int z = 2;
constexpr unsigned int V = 0;
BOOST_AUTO_TEST_SUITE( eq_test_suite )
//! [Definition of the system]
struct lid_nn
{
// dimensionaly of the equation (2D problem 3D problem ...)
static const unsigned int dims = 2;
// number of fields in the system v_x, v_y, P so a total of 3
static const unsigned int nvar = 3;
// boundary conditions PERIODIC OR NON_PERIODIC
static const bool boundary[];
// type of space float, double, ...
typedef float stype;
// type of base grid, it is the distributed grid that will store the result
// Note the first property is a 2D vector (velocity), the second is a scalar (Pressure)
typedef grid_dist_id<2,float,aggregate<float[2],float>,CartDecomposition<2,float>> b_grid;
// type of SparseMatrix, for the linear system, this parameter is bounded by the solver
// that you are using, in case of umfpack it is the only possible choice
typedef SparseMatrix<double,int> SparseMatrix_type;
// type of Vector for the linear system, this parameter is bounded by the solver
// that you are using, in case of umfpack it is the only possible choice
typedef Vector<double> Vector_type;
// Define that the underline grid where we discretize the system of equation is staggered
static const int grid_type = STAGGERED_GRID;
};
const bool lid_nn::boundary[] = {NON_PERIODIC,NON_PERIODIC};
//! [Definition of the system]
//! [Definition of the equation of the system in the bulk and at the boundary]
// Constant Field
struct eta
{
typedef void const_field;
static float val() {return 1.0;}
};
// Convenient constants
constexpr unsigned int v[] = {0,1};
constexpr unsigned int P = 2;
constexpr unsigned int ic = 2;
// Create field that we have v_x, v_y, P
typedef Field<v[x],lid_nn> v_x;
typedef Field<v[y],lid_nn> v_y;
typedef Field<P,lid_nn> Prs;
// Eq1 V_x
typedef mul<eta,Lap<v_x,lid_nn>,lid_nn> eta_lap_vx;
typedef D<x,Prs,lid_nn> p_x;
typedef minus<p_x,lid_nn> m_p_x;
typedef sum<eta_lap_vx,m_p_x,lid_nn> vx_eq;
// Eq2 V_y
typedef mul<eta,Lap<v_y,lid_nn>,lid_nn> eta_lap_vy;
typedef D<y,Prs,lid_nn> p_y;
typedef minus<p_y,lid_nn> m_p_y;
typedef sum<eta_lap_vy,m_p_y,lid_nn> vy_eq;
// Eq3 Incompressibility
typedef D<x,v_x,lid_nn,FORWARD> dx_vx;
typedef D<y,v_y,lid_nn,FORWARD> dy_vy;
typedef sum<dx_vx,dy_vy,lid_nn> ic_eq;
// Equation for boundary conditions
/* Consider the staggered cell
*
\verbatim
+--$--+
| |
# * #
| |
0--$--+
# = velocity(y)
$ = velocity(x)
* = pressure
\endverbatim
*
*
* If we want to impose v_y = 0 on 0 we have to interpolate between # of this cell
* and # of the previous cell on y, (Average) or Avg operator
*
*/
// Directional Avg
typedef Avg<x,v_y,lid_nn> avg_vy;
typedef Avg<y,v_x,lid_nn> avg_vx;
typedef Avg<x,v_y,lid_nn,FORWARD> avg_vy_f;
typedef Avg<y,v_x,lid_nn,FORWARD> avg_vx_f;
#define EQ_1 0
#define EQ_2 1
#define EQ_3 2
//! [Definition of the equation of the system in the bulk and at the boundary]
template<typename solver_type,typename lid_nn> void lid_driven_cavity_2d()
{
Vcluster<> & v_cl = create_vcluster();
if (v_cl.getProcessingUnits() > 3)
return;
//! [lid-driven cavity 2D]
// velocity in the grid is the property 0, pressure is the property 1
constexpr int velocity = 0;
constexpr int pressure = 1;
// Domain, a rectangle
Box<2,float> domain({0.0,0.0},{3.0,1.0});
// Ghost (Not important in this case but required)
Ghost<2,float> g(0.01);
// Grid points on x=256 and y=64
long int sz[] = {256,64};
size_t szu[2];
szu[0] = (size_t)sz[0];
szu[1] = (size_t)sz[1];
// We need one more point on the left and down part of the domain
// This is given by the boundary conditions that we impose, the
// reason is mathematical in order to have a well defined system
// and cannot be discussed here
Padding<2> pd({1,1},{0,0});
// Distributed grid that store the solution
grid_dist_id<2,float,aggregate<float[2],float>,CartDecomposition<2,float>> g_dist(szu,domain,g);
// It is the maximum extension of the stencil
Ghost<2,long int> stencil_max(1);
// Finite difference scheme
FDScheme<lid_nn> fd(pd, stencil_max, domain,g_dist);
// Here we impose the equation, we start from the incompressibility Eq imposed in the bulk with the
// exception of the first point {0,0} and than we set P = 0 in {0,0}, why we are doing this is again
// mathematical to have a well defined system, an intuitive explanation is that P and P + c are both
// solution for the incompressibility equation, this produce an ill-posed problem to make it well posed
// we set one point in this case {0,0} the pressure to a fixed constant for convenience P = 0
fd.impose(ic_eq(),0.0, EQ_3, {0,0},{sz[0]-2,sz[1]-2},true);
fd.impose(Prs(), 0.0, EQ_3, {0,0},{0,0});
// Here we impose the Eq1 and Eq2
fd.impose(vx_eq(),0.0, EQ_1, {1,0},{sz[0]-2,sz[1]-2});
fd.impose(vy_eq(),0.0, EQ_2, {0,1},{sz[0]-2,sz[1]-2});
// v_x and v_y
// Imposing B1
fd.impose(v_x(),0.0, EQ_1, {0,0},{0,sz[1]-2});
fd.impose(avg_vy_f(),0.0, EQ_2 , {-1,0},{-1,sz[1]-1});
// Imposing B2
fd.impose(v_x(),0.0, EQ_1, {sz[0]-1,0},{sz[0]-1,sz[1]-2});
fd.impose(avg_vy(),1.0, EQ_2, {sz[0]-1,0},{sz[0]-1,sz[1]-1});
// Imposing B3
fd.impose(avg_vx_f(),0.0, EQ_1, {0,-1},{sz[0]-1,-1});
fd.impose(v_y(), 0.0, EQ_2, {0,0},{sz[0]-2,0});
// Imposing B4
fd.impose(avg_vx(),0.0, EQ_1, {0,sz[1]-1},{sz[0]-1,sz[1]-1});
fd.impose(v_y(), 0.0, EQ_2, {0,sz[1]-1},{sz[0]-2,sz[1]-1});
// When we pad the grid, there are points of the grid that are not
// touched by the previous condition. Mathematically this lead
// to have too many variables for the conditions that we are imposing.
// Here we are imposing variables that we do not touch to zero
//
// Padding pressure
fd.impose(Prs(), 0.0, EQ_3, {-1,-1},{sz[0]-1,-1});
fd.impose(Prs(), 0.0, EQ_3, {-1,sz[1]-1},{sz[0]-1,sz[1]-1});
fd.impose(Prs(), 0.0, EQ_3, {-1,0},{-1,sz[1]-2});
fd.impose(Prs(), 0.0, EQ_3, {sz[0]-1,0},{sz[0]-1,sz[1]-2});
// Impose v_x Padding Impose v_y padding
fd.impose(v_x(), 0.0, EQ_1, {-1,-1},{-1,sz[1]-1});
fd.impose(v_y(), 0.0, EQ_2, {-1,-1},{sz[0]-1,-1});
solver_type solver;
auto x = solver.solve(fd.getA(),fd.getB());
//! [lid-driven cavity 2D]
//! [Copy the solution to grid]
fd.template copy<velocity,pressure>(x,{0,0},{sz[0]-1,sz[1]-1},g_dist);
std::string s = std::string(demangle(typeid(solver_type).name()));
s += "_";
//! [Copy the solution to grid]
g_dist.write(s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid");
#ifdef HAVE_OSX
std::string file1 = std::string("test/") + s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid_" + std::to_string(v_cl.getProcessUnitID()) + "_test_osx.vtk";
std::string file2 = s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid_" + std::to_string(v_cl.getProcessUnitID()) + ".vtk";
#else
#if __GNUC__ == 6
std::string file1 = std::string("test/") + s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid_" + std::to_string(v_cl.getProcessUnitID()) + "_test_GCC6.vtk";
std::string file2 = s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid_" + std::to_string(v_cl.getProcessUnitID()) + ".vtk";
#elif __GNUC__ == 5
std::string file1 = std::string("test/") + s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid_" + std::to_string(v_cl.getProcessUnitID()) + "_test_GCC5.vtk";
std::string file2 = s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid_" + std::to_string(v_cl.getProcessUnitID()) + ".vtk";
#else
std::string file1 = std::string("test/") + s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid_" + std::to_string(v_cl.getProcessUnitID()) + "_test_GCC4.vtk";
std::string file2 = s + "lid_driven_cavity_p" + std::to_string(v_cl.getProcessingUnits()) + "_grid_" + std::to_string(v_cl.getProcessUnitID()) + ".vtk";
#endif
#endif
std::cout << "File1: " << file1 << std::endl;
std::cout << "File2: " << file2 << std::endl;
#ifndef SE_CLASS3
// Check that match
bool test = compare(file1,file2);
BOOST_REQUIRE_EQUAL(test,true);
#endif
}
// Lid driven cavity, incompressible fluid
BOOST_AUTO_TEST_CASE(lid_driven_cavity)
{
lid_driven_cavity_2d<umfpack_solver<double>,lid_nn>();
}
BOOST_AUTO_TEST_SUITE_END()
#endif /* OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_HPP_ */
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment