Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
#!/usr/bin/env Rscript
#+ include=FALSE
require(knitr)
require(DESeq2)
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/master/R/core_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.9/R/ggplot_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.9/R/bio/diffex_commons.R")
#require.auto(gplots)
#+ results='asis', echo=FALSE
cat('
<link rel="stylesheet" type="text/css" href="http://cdn.datatables.net/1.10.5/css/jquery.dataTables.min.css">
<script type="text/javascript" charset="utf8" src="http://code.jquery.com/jquery-2.1.2.min.js"></script>
<script type="text/javascript" charset="utf8" src="http://cdn.datatables.net/1.10.5/js/jquery.dataTables.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
// alert("test")
//$("table").DataTable();
//$("table").DataTable();
//$("#tab_id").DataTable();
$(".dtable").DataTable();
} );
</script>
')
suppressMessages(require(docopt))
doc <- '
Convert a featureCounts results matrix into a dge-report using deseq2
Usage: region_dba.R [options] <count_matrix>
Options:
--contrasts=<tab_delim_table> Table with sample pairs for which dge analysis should be performed
--qcutoff <qcutoff> Use a q-value cutoff of 0.01 instead of a q-value cutoff [default: 0.01]
--pcutoff <pcutoff> Override q-value filter and filter by p-value instead
--min_count <min_count> Minimal expression in any of the sample to be included in the final result list [default: 1]
'
opts <- docopt(doc, commandArgs(TRUE))
## opts <- docopt(doc, "--pcutoff 0.05 --contrasts ../time_contrasts.txt ../peak_clusters_tss5kb.count_matrix.txt")
count_matrix_file <- opts$count_matrix
contrasts_file <- opts$contrasts
pcutoff <- if(is.null(opts$pcutoff)) NULL else as.numeric(opts$pcutoff)
qcutoff <- if(is.numeric(pcutoff)) NULL else as.numeric(opts$qcutoff)
if(is.numeric(pcutoff)) opts$qcutoff <- NULL
########################################################################################################################
#' # Load annotation data
## load transcriptome annotations needed for results annotation
geneInfo <- quote({
mart <- biomaRt::useDataset("drerio_gene_ensembl", mart = biomaRt::useMart("ensembl"))
c("ensembl_gene_id", "external_gene_name", "description", "chromosome_name", "start_position", "end_position") %>%
biomaRt::getBM(mart=mart)
}) %>% cache_it("geneInfo")
########################################################################################################################
#' # Differential Binding Analysis
#' Working Directory: `r getwd()`
resultsBase <- count_matrix_file %>% basename() %>% trim_ext(".txt") %>% trim_ext(".count_matrix")
countData <- read.delim(count_matrix_file)
names(countData) <- names(countData) %>% str_replace("[.]1", "")
countMatrix <- countData %>% column2rownames("ensembl_gene_id") %>% as.matrix()
#filterByExpression <- function(fpkmMat, min_count=1, logMode=F){
# if(logMode) fpkmMat<-log10(fpkmMat+1) ## add a pseudocount
#
# geneMax <- apply(fpkmMat, 1, max)
#
# fpkmMat[geneMax>min_count,]
#}
#countMatrixFilt <- filterByExpression(countMatrix, min_count=50)
#' See deseq reference [docs](http://master.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf) for details
#' To understand fold-change shrinking and estimation check out
#' [Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2](http://genomebiology.com/2014/15/12/550/abstract)
#' Define or load a contrasts matrix
if(!is.null(contrasts_file)){
contrasts <- read.delim(contrasts_file, header=T) %>% fac2char()
}else{
contrasts <- data.frame(sample=colnames(countMatrix)) %>%
merge(.,., suffixes=c("_1", "_2"), by=NULL) %>%
filter(ac(sample_1)>ac(sample_2)) %>%
# filter(ac(sample_1)!=ac(sample_2)) %>%
fac2char()
write.delim(contrasts, "dba_contrasts.txt")
}
contrasts %>% kable()
## basic approach using build in normalization
#colData <- data.frame(condition=colnames(countMatrix))
#dds <- DESeqDataSetFromMatrix(countMatrix, colData, formula(~ condition))
##dds <- DESeq(dds, fitType='local', betaPrior=FALSE)
#dds <- DESeq(dds, fitType='local')
## gene specific
#normalizationFactors(dds)
## sizeFactor R help:sigEnrResults
#dds <- makeExampleDESeqDataSet()
#dds <- estimateSizeFactors( dds )
#sizeFactors(dds)
## try again but now use lambda normalization
## see "3.11 Sample-/gene-dependent normalization factors" in the DEseq2 manual for details
colData <- data.frame(condition=colnames(countMatrix))
dds <- DESeqDataSetFromMatrix(countMatrix, colData, formula(~ condition))
#' # Custom Lambda Normalization
#' See https://www.biostars.org/p/79978/
#' Size Factors estimated by DESeq
dds <- estimateSizeFactors( dds )
sizeFactors(dds) %>% set_names(colnames(countMatrix)) %>% melt() %>% rownames2column("sample") %>% ggplot(aes(sample, value)) + geom_bar(stat="identity") + ggtitle("deseq size factors")
#' From the DESeq docs about how size factors are used: The sizeFactors vector assigns to each column of the count matrix a value, the size factor, such that count values in the columns can be brought to a common scale by dividing by the corresponding size factor.
#' This means that counts are divied by size factors. So let's now load the lambda libraies and replace the predefined size factors with our custom ones
lambdaLibs <- read.delim("../..//lambda_norm/lambda_lib_sizes.txt") ## load the labmda factors
#' normalize them with their median to achieve a similar scale as the original size factors
lambdaLibs %<>% mutate(lambda_size_factor=ngs_lambda_lib_size/median(ngs_lambda_lib_size))
lambdaLibs %>% ggplot(aes(sample, lambda_size_factor)) + geom_bar(stat="identity") + ggtitle("lambda size factors")
#' From DESeq manual: The regularized log transformation is preferable to the variance stabilizing transformation if the size factors vary widely.
#' Replace size factors with our ones
#' NOTE THIS IS DISABLED FOR NOW
sizeFactors(dds) <- lambdaLibs$lambda_size_factor
#rld <- rlog(dds, fitType='local')
#rlogMat <- assay(rld)
#' Run Deseq Test
#dds <- DESeq(dds, fitType='local', betaPrior=FALSE)
dds <- DESeq(dds, fitType='local')
#' Test if deseq preserved our size factors
sizeFactors(dds) %>% set_names(colnames(countMatrix)) %>% melt() %>% rownames2column("sample") %>% ggplot(aes(sample, value)) + geom_bar(stat="identity") + ggtitle("deseq size factors after running deseq")
#res <- results(dds)
#resultsNames(dds)
#' Model Overview
#+ results='asis'
summary(results(dds))
## extract all de-sets according to our contrasts model
deResults <- adply(contrasts, 1, splat(function(sample_1, sample_2){
# browser()
results(dds, contrast=c("condition",sample_1,sample_2)) %>%
rownames2column("ensembl_gene_id") %>%
as.data.frame() %>%
## see http://rpackages.ianhowson.com/bioc/DESeq2/man/results.html when using contrasts argument
rename(s1_over_s2_logfc=log2FoldChange) %>%
mutate(sample_1=sample_1, sample_2=sample_2)
}))
deResults %>% ggplot(aes(s1_over_s2_logfc)) +
geom_histogram(binwidth=0.1) +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0, color="blue") +
xlim(-2,2) +
ggtitle("sample1 over sampl2 logFC ")
#' ## Significnce of differential binding
deResults %>% ggplot(aes(pvalue)) +
geom_histogram() +
xlim(0,1) +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0.01, slope=1, color="blue") +
ggtitle("p-value distributions") #+ scale_x_log10()
deResults %>% ggplot(aes(padj)) +
geom_histogram() +
xlim(0,1) +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0.01, slope=1, color="blue") +
ggtitle("Adjusted p-value distributions") + scale_x_log10()
#' Set hit criterion
#+ results='asis'
if(!is.null(qcutoff)){
echo("Using q-value cutoff of", qcutoff)
deResults %<>% transform(is_hit=padj<=qcutoff)
}else{
echo("Using p-value cutoff of", pcutoff)
deResults %<>% transform(is_hit=pvalue<=pcutoff)
}
#deResults %<>% mutate(is_hit=pvalue<0.05)
deResults %<>% mutate(s1_overex=s1_over_s2_logfc>1)
normCounts <- counts(dds,normalized=TRUE) %>%
set_names(colData(dds)$condition) %>% rownames2column("ensembl_gene_id")
rawCounts <- counts(dds,normalized=F) %>%
set_names(colData(dds)$condition) %>% rownames2column("ensembl_gene_id")
## .. should be same as input
#filter(countData, ensembl_gene_id=="ENSDARG00000000001")
#' # MA and Volcano plots
# deseq approach
# plotMA(deResults, main="DESeq2", ylim=c(-2,2))
## facet plot
maData <- normCounts %>%
gather(sample, norm_count, -ensembl_gene_id) %>%
merge(.,., by="ensembl_gene_id", suffixes=c("_1", "_2")) %>%
# filter(ac(sample_1)<ac(sample_2)) %>%
# add diffex status
merge(deResults)
#+ fig.width=16, fig.height=14
maData %>% ggplot(aes(0.5*log2(norm_count_1*norm_count_2), log2(norm_count_2/norm_count_1), color=pvalue<0.05)) +
geom_point(alpha=0.3) +
geom_hline(yintercept=0, color="red") +
facet_grid(sample_1 ~ sample_2)
##Volcano plots
hitCounts <- filter(deResults, is_hit) %>%
count(sample_1, sample_2, sample_1_overex=s1_over_s2_logfc>0) %>%
rename(hits=n) %>%
merge(data.frame(sample_1_overex=c(T,F), x_pos=c(-2.5,2.5)))
#+ fig.width=16, fig.height=14
deResults %>% ggplot(aes(s1_over_s2_logfc, -log10(pvalue), color=is_hit)) +
geom_jitter(alpha=0.3, position = position_jitter(height = 0.2)) +
# theme_bw() +
xlim(-3,3) +
scale_color_manual(values = c("TRUE"="red", "FALSE"="black")) +
# ggtitle("Insm1/Ctrl") +
## http://stackoverflow.com/questions/19764968/remove-point-transparency-in-ggplot2-legend
guides(colour = guide_legend(override.aes = list(alpha=1))) +
## tweak axis labels
xlab(expression(log[2]("x/y"))) +
ylab(expression(-log[10]("p value"))) +
## add hit couts
geom_text(aes(label=hits, x=x_pos), y=2, color="red", size=10, data=hitCounts) +
facet_grid(sample_1 ~ sample_2)
# Define absolute binding categories
ggplot(rawCounts, aes(H3HA_Sphere)) + geom_histogram() + scale_x_log10() + ggtitle("raw H3HA_Sphere counts distribution")
require.auto(Hmisc)
bindCats <- rawCounts %>% transmute(ensembl_gene_id, bind_category=cut2(H3HA_Sphere, cuts=c(10, 100)))
with(bindCats, as.data.frame(table(bind_category))) %>% kable()
########################################################################################################################
## if working with peak clusters try to fox the gene idby using chipseq anno
if(str_detect(count_matrix_file, "peak_clusters_tss5kb")){
require(ChIPpeakAnno)
data(TSS.zebrafish.Zv9)
## reload dplyr to fix namespace issues
unloadNamespace('dplyr'); require(dplyr)
## https://www.biostars.org/p/115101/
## http://master.bioconductor.org/help/course-materials/2009/SeattleNov09/IRanges/IRangesOverview.R
distinctClusters <- deResults %>%
transmute(cluster_id=ensembl_gene_id) %>% distinct() %>%
separate(cluster_id, c("chromosome_name", "start_position", "end_position"), remove=F) %>%
mutate_each(funs(as.numeric), start_position, end_position)
clusters <- distinctClusters %$% RangedData(ranges = IRanges(start_position, end_position), strand = ".", space = chromosome_name)
annotatedClusters = annotatePeakInBatch (clusters, AnnotationData = TSS.zebrafish.Zv9)
annotatedClusters %>% as.df()%>% ggplot(aes(insideFeature)) + geom_bar() + ggtitle("clusters relative to tss")
annotatedClusters %>% as.df() %>% head() %>% kable()
## add slim version of it to de-results
tssAnnoSlim <- annotatedClusters %>% as.df() %>%
inner_join(distinctClusters,c("space"="chromosome_name", "start"="start_position", "end"="end_position")) %>%
transmute(cluster_id, ensembl_gene_id=feature, distancetoFeature, insideFeature)
stopifnot(nrow(tssAnnoSlim)==nrow(distinctClusters))
save(deResults, file=".deResults.RData")
# deResults <- local(get(load("deResults.RData")))
deResults %<>% rename(cluster_id=ensembl_gene_id) %>% inner_join(tssAnnoSlim)
normCounts %<>% rename(cluster_id=ensembl_gene_id)
bindCats %<>% rename(cluster_id=ensembl_gene_id)
}
# Export the complete dataset for later analysis
deAnnot <- deResults %>%
inner_join(normCounts) %>%
left_join(geneInfo) %>%
left_join(bindCats)
stopifnot(nrow(deAnnot)==nrow(deResults))
write.delim(deAnnot, file=paste0(resultsBase, ".dba_results.txt"))
#' [deAnnot](`r paste0(resultsBase, ".dba_results.txt")`)
#' ## Hits Summary
## Extract hits from deseq results
degs <- deAnnot %>% filter(is_hit)
ggplot(degs, aes(paste(sample_1, "vs", sample_2))) + geom_bar() +xlab(NULL) + ylab("# DBGs") + ggtitle("DBG count summary") + coord_flip()
degs %>%
ggplot(aes(paste(sample_1, "vs", sample_2), fill=s1_overex)) +
geom_bar(position="dodge") +
xlab(NULL) + ylab("# DBGs") +
ggtitle("DBG count summary by direction of expression") +
coord_flip()
# Export DBA genes
## disabled because we just subset the annotated data now to define degs
#degsAnnot <- degs %>%
# inner_join(normCounts) %>%
# left_join(geneInfo) %>%
# left_join(bindCats)
degs %>% write.delim(file=paste0(resultsBase, ".diffbind_genes.txt"))
#' [degs](`r paste0(resultsBase, ".diffbind_genes.txt")`)
## render interactive hit browser
#+results='asis'
degs %>%
left_join(geneInfo) %>%
mutate(
igv=paste0("<a href='http://localhost:60151/goto?locus=", chromosome_name,":", start_position, "-", end_position, "'>IGV</a>")
) %>%
select(s1_over_s2_logfc, pvalue, ensembl_gene_id, sample_1, sample_2, external_gene_name, description, igv) %>%
kable("html", table.attr = "class='dtable'", escape=F)
########################################################################################################################
#' ## Term enrichment
#+ echo=FALSE
#' This analysis was performed using [David](http://david.abcc.ncifcrf.gov/). The following ontologies were tested: `r paste(ontologies, collapse=', ')`
geneLists <- degs %>%
transmute(ensembl_gene_id, list_id=paste(sample_1, "vs", sample_2))
if(nrow(contrasts)<4){
geneLists <- rbind_list(
geneLists,
degs %>% filter(s1_overex) %>% transmute(ensembl_gene_id, list_id=paste(sample_1, ">", sample_2)),
degs %>% filter(!s1_overex) %>% transmute(ensembl_gene_id, list_id=paste(sample_1, "<", sample_2))
)
}
## additional overlaps before doing the intersection analysis
geneLists %>% count(list_id) %>% kable()
intersectLists <- function(geneLists, listIdA, listIdB, intersectListId) {
commonGenes <- setdiff(filter(geneLists, list_id==listIdA)$ensembl_gene_id, filter(geneLists, list_id==listIdB)$ensembl_gene_id)
data.frame(list_id=intersectListId, ensembl_gene_id=commonGenes)
}
## make this project specific setting
#with(geneLists, as.data.frame(table(list_id))) %$% ac(unique(list_id))
#if(any(str_detect(geneLists$list_id, "cyst"))){
# geneLists <- intersectLists(geneLists, "liver != unpolarised", "cyst != unpolarised", "unp_liv & unp_cys") %>% rbind_list(geneLists)
#}
geneLists <- distinct(geneLists) ## just precaution in case of multiple evals of statements above
#+ eval=T
enrResults <- quote(geneLists %>% group_by(list_id) %>% do(davidAnnotationChart(.$ensembl_gene_id))) %>%
cache_it(paste0("enrdata_", digest(geneLists)))
write.delim(enrResults, file="enrResults.txt")
# enrResults <- read.delim("enrResults.txt")
#' [Enrichment Results](enrResults.txt)
#ac(annoChart$Genes[1]) %>% str_split(", ") %>% unlist() %>% length()
#
#' Because David is not too strigent by default we extract just those terms for which Bonferroni<0.01
sigEnrResults <- filter(enrResults, Bonferroni <0.01)
#' results='asis'
if(nrow(sigEnrResults)>0){
sigEnrResults %>% select(-Genes) %>% kable("html", table.attr = "class='dtable'", escape=F)
}else{
echo("no highly significant terms found")
sigEnrResults = data.frame(Category=factor(c(), c()))
}
write.delim(sigEnrResults, file="sigEnrResults.txt")
# sigEnrResults <- read.delim("sigEnrResults.txt")
#' [Very Significant Terms](sigEnrResults.txt)
## plot the enrichment results
#sigEnrResults %>% group_by(Category, add=T) %>% do({
# logPlot <- . %>% ggplot(aes(Term, PValue)) +
# geom_bar(stat="identity")+coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(.$Category[1]) +
# scale_y_log10()
# print(logPlot)
#})
#+ include=FALSE, eval=nrow(sigEnrResults)>1
warning("dropping levels")
sigEnrResults %<>% mutate(Category=ac(Category)) ## drop unsused level to get consistent color palette
term_category_colors <- create_palette(unique(ac(sigEnrResults$Category)))
term_barplot_files <- sigEnrResults %>%
## chop and pad category names
mutate(Term=str_sub(Term, 1, 70) %>% str_pad(70)) %>%
do({
#browser()
enrResultsGrp <- .
## DEBUG enrResultsGrp <- sigEnrResults
label <- enrResultsGrp$list_id[1]
if(nrow(enrResultsGrp)==0) return(data.frame())
browser()
# warning(paste0("processing terms", paste(ac(unique(enrResultsGrp$Category)), collapse=",")))
logPlot <- enrResultsGrp %>%
## fix factor order
mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(as.factor(Category)))) %>%
ggplot(aes(Term, PValue, fill=Category)) +
geom_bar(stat="identity")+
scale_fill_manual(values = term_category_colors, drop=F, name="Ontology") +
coord_flip() +
xlab("Enriched Terms") +
ggtitle(label) +
scale_y_log10()
fileNameLabel <- label %>%
str_replace_all("!=", "ne") %>%
str_replace_all(">", "gt") %>%
str_replace_all("<", "lt") %>%
str_replace_all(fixed("&"), "AND") %>%
str_replace_all(fixed("|"), "OR") %>%
str_replace_all(" ", "_")
# ggsave(paste0("enrichmed_terms__", fileNameLabel, ".pdf"))
# print(logPlot)
tmpPng <- paste0("enrterms__", fileNameLabel, ".png")
ggsave(tmpPng, logPlot, width=10, height = 2+round(nrow(enrResultsGrp)/5), limitsize=FALSE)
data.frame(file=tmpPng)
})
#+ results="asis"
l_ply(term_barplot_files$file, function(pngFile){ cat(paste0("<img src='", pngFile, "'><br>"))})