Skip to content
Snippets Groups Projects
featcounts_deseq.R 18 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
#!/usr/bin/env Rscript
#+ include=FALSE

require(knitr)
require(DESeq2)

devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/master/R/core_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.9/R/ggplot_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.9/R/bio/diffex_commons.R")

#require.auto(gplots)

#+ results='asis', echo=FALSE
cat('
<link rel="stylesheet" type="text/css" href="http://cdn.datatables.net/1.10.5/css/jquery.dataTables.min.css">
<script type="text/javascript" charset="utf8" src="http://code.jquery.com/jquery-2.1.2.min.js"></script>
<script type="text/javascript" charset="utf8" src="http://cdn.datatables.net/1.10.5/js/jquery.dataTables.min.js"></script>

<script type="text/javascript">
         $(document).ready(function() {
            // alert("test")
             //$("table").DataTable();
             //$("table").DataTable();
             //$("#tab_id").DataTable();
             $(".dtable").DataTable();
         } );
</script>
')


suppressMessages(require(docopt))

doc <- '
Convert a featureCounts results matrix into a dge-report using deseq2
Usage: region_dba.R [options] <count_matrix>

Options:
--contrasts=<tab_delim_table> Table with sample pairs for which dge analysis should be performed
--qcutoff <qcutoff>    Use a q-value cutoff of 0.01 instead of a q-value cutoff [default: 0.01]
--pcutoff <pcutoff>    Override q-value filter and filter by p-value instead
--min_count <min_count>   Minimal expression in any of the sample to be included in the final result list [default: 1]
'
opts <- docopt(doc, commandArgs(TRUE))

## opts <- docopt(doc, "--pcutoff 0.05 --contrasts ../time_contrasts.txt ../peak_clusters_tss5kb.count_matrix.txt")

count_matrix_file <- opts$count_matrix
contrasts_file <- opts$contrasts

pcutoff <- if(is.null(opts$pcutoff)) NULL else as.numeric(opts$pcutoff)
qcutoff <- if(is.numeric(pcutoff)) NULL else as.numeric(opts$qcutoff)
if(is.numeric(pcutoff)) opts$qcutoff <- NULL


########################################################################################################################
#' # Load annotation data

## load transcriptome annotations needed for results annotation
geneInfo <- quote({
        mart <- biomaRt::useDataset("drerio_gene_ensembl", mart = biomaRt::useMart("ensembl"))
        c("ensembl_gene_id", "external_gene_name", "description", "chromosome_name", "start_position", "end_position") %>%
            biomaRt::getBM(mart=mart)
    }) %>% cache_it("geneInfo")


########################################################################################################################
#' # Differential Binding Analysis

#' Working Directory: `r getwd()`

resultsBase <- count_matrix_file %>% basename() %>% trim_ext(".txt") %>% trim_ext(".count_matrix")

countData <- read.delim(count_matrix_file)
names(countData) <- names(countData) %>% str_replace("[.]1", "")

countMatrix <- countData %>% column2rownames("ensembl_gene_id") %>% as.matrix()


#filterByExpression <- function(fpkmMat, min_count=1, logMode=F){
#    if(logMode) fpkmMat<-log10(fpkmMat+1) ## add a pseudocount
#
#    geneMax <- apply(fpkmMat, 1, max)
#
#    fpkmMat[geneMax>min_count,]
#}
#countMatrixFilt  <- filterByExpression(countMatrix, min_count=50)

#' See deseq reference [docs](http://master.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf) for details

#' To understand fold-change shrinking and estimation check out
#' [Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2](http://genomebiology.com/2014/15/12/550/abstract)

#' Define or load a contrasts matrix
if(!is.null(contrasts_file)){
    contrasts <- read.delim(contrasts_file, header=T) %>% fac2char()
}else{
    contrasts <- data.frame(sample=colnames(countMatrix)) %>%
        merge(.,., suffixes=c("_1", "_2"), by=NULL) %>%
        filter(ac(sample_1)>ac(sample_2)) %>%
#        filter(ac(sample_1)!=ac(sample_2)) %>%
        fac2char()
    write.delim(contrasts, "dba_contrasts.txt")
}

contrasts %>% kable()


## basic approach using build in normalization
#colData <- data.frame(condition=colnames(countMatrix))
#dds <- DESeqDataSetFromMatrix(countMatrix, colData, formula(~ condition))
##dds <- DESeq(dds, fitType='local', betaPrior=FALSE)
#dds <- DESeq(dds, fitType='local')


## gene specific
#normalizationFactors(dds)

## sizeFactor R help:sigEnrResults
#dds <- makeExampleDESeqDataSet()
#dds <- estimateSizeFactors( dds )
#sizeFactors(dds)

## try again but now use lambda normalization
## see "3.11 Sample-/gene-dependent normalization factors" in the DEseq2 manual for details
colData <- data.frame(condition=colnames(countMatrix))
dds <- DESeqDataSetFromMatrix(countMatrix, colData, formula(~ condition))

#' #  Custom Lambda Normalization

#' See https://www.biostars.org/p/79978/

#' Size Factors estimated by DESeq
dds <- estimateSizeFactors( dds )
sizeFactors(dds) %>% set_names(colnames(countMatrix)) %>% melt() %>% rownames2column("sample") %>%  ggplot(aes(sample, value)) + geom_bar(stat="identity") + ggtitle("deseq size factors")

#' From the DESeq docs about how size factors are used: The sizeFactors vector assigns to each column of the count matrix a value, the size factor, such that count values in the columns can be brought to a common scale by dividing by the corresponding size factor.

#' This means that counts are divied by size factors. So let's now load the lambda libraies and replace the predefined size factors with our custom ones
lambdaLibs <- read.delim("../..//lambda_norm/lambda_lib_sizes.txt") ## load the labmda factors

#' normalize them with their median to achieve a similar scale as the original size factors
lambdaLibs %<>% mutate(lambda_size_factor=ngs_lambda_lib_size/median(ngs_lambda_lib_size))
lambdaLibs %>% ggplot(aes(sample, lambda_size_factor)) + geom_bar(stat="identity") + ggtitle("lambda size factors")

#' From DESeq manual: The regularized log transformation is preferable to the variance stabilizing transformation if the size factors vary widely.

#' Replace size factors with our ones
#' NOTE THIS IS DISABLED FOR NOW
sizeFactors(dds) <- lambdaLibs$lambda_size_factor

#rld <- rlog(dds, fitType='local')
#rlogMat <- assay(rld)

#' Run Deseq Test
#dds <- DESeq(dds, fitType='local', betaPrior=FALSE)
dds <- DESeq(dds, fitType='local')

#' Test if deseq preserved our size factors
sizeFactors(dds) %>% set_names(colnames(countMatrix)) %>% melt() %>% rownames2column("sample") %>%  ggplot(aes(sample, value)) + geom_bar(stat="identity") + ggtitle("deseq size factors after running deseq")


#res <- results(dds)
#resultsNames(dds)

#' Model Overview
#+ results='asis'
summary(results(dds))

## extract all de-sets according to our contrasts model
deResults <- adply(contrasts, 1,  splat(function(sample_1, sample_2){
#    browser()
   results(dds, contrast=c("condition",sample_1,sample_2)) %>%
        rownames2column("ensembl_gene_id") %>%
        as.data.frame() %>%
        ## see http://rpackages.ianhowson.com/bioc/DESeq2/man/results.html when using contrasts argument
        rename(s1_over_s2_logfc=log2FoldChange) %>%
        mutate(sample_1=sample_1, sample_2=sample_2)
}))


deResults %>% ggplot(aes(s1_over_s2_logfc)) +
    geom_histogram(binwidth=0.1) +
    facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0, color="blue") +
    xlim(-2,2) + 
    ggtitle("sample1 over sampl2 logFC ")



#' ## Significnce of differential binding

deResults %>% ggplot(aes(pvalue)) +
    geom_histogram() +
    xlim(0,1) +
    facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0.01, slope=1, color="blue") +
    ggtitle("p-value distributions") #+ scale_x_log10()

deResults %>% ggplot(aes(padj)) +
    geom_histogram() +
    xlim(0,1) +
    facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0.01, slope=1, color="blue") +
    ggtitle("Adjusted p-value distributions") + scale_x_log10()


#' Set hit criterion
#+ results='asis'
if(!is.null(qcutoff)){
    echo("Using q-value cutoff of", qcutoff)
    deResults %<>% transform(is_hit=padj<=qcutoff)
}else{
    echo("Using p-value cutoff of", pcutoff)
    deResults %<>% transform(is_hit=pvalue<=pcutoff)
}
#deResults %<>% mutate(is_hit=pvalue<0.05)

deResults %<>% mutate(s1_overex=s1_over_s2_logfc>1)


normCounts <- counts(dds,normalized=TRUE) %>%
    set_names(colData(dds)$condition) %>% rownames2column("ensembl_gene_id")

rawCounts <- counts(dds,normalized=F) %>%
    set_names(colData(dds)$condition) %>% rownames2column("ensembl_gene_id")

## .. should be same as input
#filter(countData, ensembl_gene_id=="ENSDARG00000000001")

#' # MA and Volcano plots

# deseq approach
# plotMA(deResults, main="DESeq2", ylim=c(-2,2))

## facet plot
maData <- normCounts %>%
    gather(sample, norm_count, -ensembl_gene_id) %>%
    merge(.,., by="ensembl_gene_id", suffixes=c("_1", "_2")) %>%
#    filter(ac(sample_1)<ac(sample_2)) %>%
    # add diffex status
    merge(deResults)


#+ fig.width=16, fig.height=14
maData %>% ggplot(aes(0.5*log2(norm_count_1*norm_count_2), log2(norm_count_2/norm_count_1), color=pvalue<0.05)) +
    geom_point(alpha=0.3) +
    geom_hline(yintercept=0, color="red") +
    facet_grid(sample_1 ~ sample_2)


##Volcano plots
hitCounts <- filter(deResults, is_hit) %>%
        count(sample_1, sample_2, sample_1_overex=s1_over_s2_logfc>0) %>%
        rename(hits=n) %>%
        merge(data.frame(sample_1_overex=c(T,F), x_pos=c(-2.5,2.5)))

#+ fig.width=16, fig.height=14
deResults %>% ggplot(aes(s1_over_s2_logfc, -log10(pvalue), color=is_hit)) +
    geom_jitter(alpha=0.3, position = position_jitter(height = 0.2)) +
#    theme_bw() +
    xlim(-3,3) +
    scale_color_manual(values = c("TRUE"="red", "FALSE"="black")) +
#    ggtitle("Insm1/Ctrl") +
    ## http://stackoverflow.com/questions/19764968/remove-point-transparency-in-ggplot2-legend
    guides(colour = guide_legend(override.aes = list(alpha=1))) +

    ## tweak axis labels
    xlab(expression(log[2]("x/y"))) +
    ylab(expression(-log[10]("p value"))) +

    ## add hit couts
    geom_text(aes(label=hits, x=x_pos), y=2, color="red", size=10, data=hitCounts) +
    facet_grid(sample_1 ~ sample_2)



# Define absolute binding categories
ggplot(rawCounts, aes(H3HA_Sphere)) + geom_histogram() + scale_x_log10() + ggtitle("raw H3HA_Sphere counts distribution")
require.auto(Hmisc)

bindCats <- rawCounts %>% transmute(ensembl_gene_id, bind_category=cut2(H3HA_Sphere, cuts=c(10, 100)))
with(bindCats, as.data.frame(table(bind_category))) %>% kable()


########################################################################################################################
## if working with peak clusters try to fox the gene idby using chipseq anno

if(str_detect(count_matrix_file, "peak_clusters_tss5kb")){

require(ChIPpeakAnno)
data(TSS.zebrafish.Zv9)

## reload dplyr to fix namespace issues
unloadNamespace('dplyr'); require(dplyr)

## https://www.biostars.org/p/115101/
## http://master.bioconductor.org/help/course-materials/2009/SeattleNov09/IRanges/IRangesOverview.R

distinctClusters <- deResults %>%
    transmute(cluster_id=ensembl_gene_id) %>% distinct() %>%
    separate(cluster_id, c("chromosome_name", "start_position", "end_position"), remove=F) %>%
    mutate_each(funs(as.numeric), start_position, end_position)

clusters <- distinctClusters %$% RangedData(ranges = IRanges(start_position, end_position), strand = ".", space = chromosome_name)

annotatedClusters = annotatePeakInBatch (clusters, AnnotationData = TSS.zebrafish.Zv9)
annotatedClusters %>% as.df()%>% ggplot(aes(insideFeature))  + geom_bar() + ggtitle("clusters relative to tss")
annotatedClusters %>% as.df() %>% head() %>% kable()

## add slim version of it to de-results
tssAnnoSlim <- annotatedClusters %>% as.df() %>%  
    inner_join(distinctClusters,c("space"="chromosome_name", "start"="start_position", "end"="end_position")) %>% 
    transmute(cluster_id, ensembl_gene_id=feature, distancetoFeature, insideFeature)

stopifnot(nrow(tssAnnoSlim)==nrow(distinctClusters))

save(deResults, file=".deResults.RData")
# deResults <- local(get(load("deResults.RData")))

deResults %<>% rename(cluster_id=ensembl_gene_id) %>% inner_join(tssAnnoSlim)
normCounts %<>% rename(cluster_id=ensembl_gene_id)
bindCats %<>% rename(cluster_id=ensembl_gene_id)
}


# Export the complete dataset for later analysis
deAnnot <- deResults %>%
    inner_join(normCounts) %>%
    left_join(geneInfo) %>%
    left_join(bindCats)

stopifnot(nrow(deAnnot)==nrow(deResults))

write.delim(deAnnot, file=paste0(resultsBase, ".dba_results.txt"))
#'  [deAnnot](`r paste0(resultsBase, ".dba_results.txt")`)


#' ## Hits Summary

## Extract hits from deseq results
degs <- deAnnot %>% filter(is_hit)

ggplot(degs, aes(paste(sample_1, "vs",  sample_2))) + geom_bar() +xlab(NULL) + ylab("# DBGs") + ggtitle("DBG count summary") + coord_flip()

degs %>%
    ggplot(aes(paste(sample_1, "vs",  sample_2), fill=s1_overex)) +
    geom_bar(position="dodge") +
    xlab(NULL) + ylab("# DBGs") +
    ggtitle("DBG count summary by direction of expression") +
    coord_flip()

# Export DBA genes
## disabled because we just subset the annotated data now to define degs
#degsAnnot <- degs %>%
#    inner_join(normCounts) %>%
#    left_join(geneInfo) %>%
#    left_join(bindCats)
degs %>% write.delim(file=paste0(resultsBase, ".diffbind_genes.txt"))
#'  [degs](`r paste0(resultsBase, ".diffbind_genes.txt")`)


## render interactive hit browser
#+results='asis'
degs %>%
    left_join(geneInfo) %>%
    mutate(
        igv=paste0("<a href='http://localhost:60151/goto?locus=", chromosome_name,":", start_position, "-", end_position, "'>IGV</a>")
    ) %>%
    select(s1_over_s2_logfc, pvalue, ensembl_gene_id, sample_1, sample_2, external_gene_name, description, igv) %>%
    kable("html", table.attr = "class='dtable'", escape=F)


########################################################################################################################
#' ## Term enrichment

#+ echo=FALSE

#' This analysis was performed using [David](http://david.abcc.ncifcrf.gov/). The following ontologies were tested: `r paste(ontologies, collapse=', ')`

geneLists <- degs %>%
    transmute(ensembl_gene_id, list_id=paste(sample_1, "vs", sample_2))

if(nrow(contrasts)<4){
    geneLists <- rbind_list(
        geneLists,
        degs %>% filter(s1_overex) %>% transmute(ensembl_gene_id, list_id=paste(sample_1, ">", sample_2)),
        degs %>% filter(!s1_overex) %>% transmute(ensembl_gene_id, list_id=paste(sample_1, "<", sample_2))
    )
}

## additional overlaps before doing the intersection analysis
geneLists %>% count(list_id) %>% kable()

intersectLists <- function(geneLists, listIdA, listIdB, intersectListId) {
    commonGenes <- setdiff(filter(geneLists, list_id==listIdA)$ensembl_gene_id, filter(geneLists, list_id==listIdB)$ensembl_gene_id)
    data.frame(list_id=intersectListId, ensembl_gene_id=commonGenes)
}

## make this project specific setting
#with(geneLists, as.data.frame(table(list_id))) %$% ac(unique(list_id))
#if(any(str_detect(geneLists$list_id, "cyst"))){
#    geneLists <- intersectLists(geneLists, "liver != unpolarised", "cyst != unpolarised", "unp_liv & unp_cys") %>% rbind_list(geneLists)
#}

geneLists <- distinct(geneLists) ## just precaution in case of multiple evals of statements above


#+ eval=T
enrResults <- quote(geneLists %>% group_by(list_id) %>% do(davidAnnotationChart(.$ensembl_gene_id))) %>%
    cache_it(paste0("enrdata_", digest(geneLists)))

write.delim(enrResults, file="enrResults.txt")
# enrResults <- read.delim("enrResults.txt")
#'  [Enrichment Results](enrResults.txt)

#ac(annoChart$Genes[1]) %>% str_split(", ") %>% unlist() %>% length()

#
#' Because David is not too strigent by default we extract just those terms for which Bonferroni<0.01
sigEnrResults <- filter(enrResults, Bonferroni <0.01)



#' results='asis'
if(nrow(sigEnrResults)>0){
sigEnrResults %>% select(-Genes) %>% kable("html", table.attr = "class='dtable'", escape=F)
}else{
echo("no highly significant terms found")
sigEnrResults = data.frame(Category=factor(c(), c()))
}

write.delim(sigEnrResults, file="sigEnrResults.txt")
# sigEnrResults <- read.delim("sigEnrResults.txt")
#'  [Very Significant Terms](sigEnrResults.txt)


## plot the enrichment results
#sigEnrResults %>% group_by(Category, add=T) %>% do({
#    logPlot <- . %>% ggplot(aes(Term, PValue)) +
#	    geom_bar(stat="identity")+coord_flip() +
#	    xlab("Enriched Terms") +
#	    ggtitle(.$Category[1]) +
#	    scale_y_log10()
#	    print(logPlot)
#})

#+ include=FALSE, eval=nrow(sigEnrResults)>1
warning("dropping levels")
sigEnrResults %<>% mutate(Category=ac(Category)) ## drop unsused level to get consistent color palette

term_category_colors <- create_palette(unique(ac(sigEnrResults$Category)))

term_barplot_files <- sigEnrResults %>%
## chop and pad category names
mutate(Term=str_sub(Term, 1, 70) %>% str_pad(70)) %>%
do({
#browser()
    enrResultsGrp <- .
    ## DEBUG enrResultsGrp <- sigEnrResults
    label <- enrResultsGrp$list_id[1]

    if(nrow(enrResultsGrp)==0)  return(data.frame())
    browser()

#    warning(paste0("processing terms", paste(ac(unique(enrResultsGrp$Category)), collapse=",")))
    logPlot <- enrResultsGrp %>%
        ## fix factor order
        mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(as.factor(Category)))) %>%
        ggplot(aes(Term, PValue, fill=Category)) +
        geom_bar(stat="identity")+
        scale_fill_manual(values = term_category_colors, drop=F, name="Ontology") +
        coord_flip() +
        xlab("Enriched Terms") +
        ggtitle(label) +
        scale_y_log10()

    fileNameLabel <- label %>%
        str_replace_all("!=", "ne") %>%
        str_replace_all(">", "gt") %>%
        str_replace_all("<", "lt") %>%
        str_replace_all(fixed("&"), "AND") %>%
        str_replace_all(fixed("|"), "OR") %>%
        str_replace_all(" ", "_")

#        ggsave(paste0("enrichmed_terms__", fileNameLabel, ".pdf"))
#        print(logPlot)

     tmpPng <- paste0("enrterms__", fileNameLabel, ".png")
     ggsave(tmpPng, logPlot, width=10, height = 2+round(nrow(enrResultsGrp)/5), limitsize=FALSE)
     data.frame(file=tmpPng)
})

#+ results="asis"
l_ply(term_barplot_files$file, function(pngFile){ cat(paste0("<img src='", pngFile, "'><br>"))})