Newer
Older
suppressMessages(require(docopt))
doc <- '
Perform an enrichment analysis for a set of genes
Usage: david_enrichment.R [options] <grouped_gene_lists_rdata>
Options:
--overlay_expr_data Tsv with overlay data for the kegg pathways
'
opts <- docopt(doc, commandArgs(TRUE)) ## does not work when spining
#opts <- docopt(doc, "--overlay_expr_data ../ctrl_fc_expr_filtered.txt geneClusters.RData" )
#opts <- docopt(doc, "--overlay_expr_data ../ctrl_fc_expr_filtered.txt grpdGoiClusters.RData" )
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/core_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/ggplot_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/bio/diffex_commons.R")
require.auto(knitr)
## to fix child support issue with knitr, see also
## http://stackoverflow.com/questions/20030523/knitr-nested-child-documents
## https://github.com/yihui/knitr/issues/38
# todo disabled because root.dir in parent document seems the only working solution
#if(exists('project_dir')) setwd(project_dir)
#print(getwd())
## load the data
geneLists <- local(get(load(opts$grouped_gene_lists_rdata)))
#geneLists %<>% filter(cluster %in% c("cluster_1", "cluster_2"))
if(!is.null(opts$overlay_expr_data)){
overlayData <- read.delim(opts$overlay_expr_data)
}
resultsBaseName=basename(opts$grouped_gene_lists_rdata) %>% trim_ext(".RData") %>% paste0(".")
########################################################################################################################
```
## Enrichment Analysis
This analysis was performed using [David](http://david.abcc.ncifcrf.gov/). The following ontologies were tested: `r paste(DEF_DAVID_ONTOLOGIES, collapse=', ')`
```{r }
listLabels <- geneLists %>% select(-ensembl_gene_id) %>% distinct
listLabels %<>% transform(list_label=do.call(paste, c(listLabels, sep="__")))
geneLists %>% inner_join(listLabels) %>%
ggplot(aes(list_label)) +
geom_bar() +
coord_flip() +
ggtitle("gene list sizes to be tested for term enrichment") +
ylab("")
#enrResults <- geneLists %>% do(davidAnnotationChart(.$ensembl_gene_id))
enrResults <- quote(geneLists %>% do(davidAnnotationChart(.$ensembl_gene_id))) %>%
cache_it(paste0("enrdata_", digest(geneLists)))
write.delim(enrResults, file=paste0(resultsBaseName, "enrResults.txt"))
# enrResults <- read.delim(paste0(resultsBaseName, "enrResults.txt"))
[Enrichment Results](`r paste0(resultsBaseName, "enrResults.txt")`)
```{r }
sigEnrResults <- subset(enrResults, Bonferroni <0.01)
write.delim(sigEnrResults, file=paste0(resultsBaseName, "sigEnrResults.txt"))
# sigEnrResults <- read.delim(paste0(resultsBaseName, "sigEnrResults.txt"))
```
[Very Significant Terms](`r paste0(resultsBaseName, "sigEnrResults.txt")`)
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
## plot the enrichment results
#sigEnrResults %>% group_by(Category, add=T) %>% do({
# logPlot <- . %>% ggplot(aes(Term, PValue)) +
# geom_bar(stat="identity")+coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(.$Category[1]) +
# scale_y_log10()
# print(logPlot)
#})
#sigEnrResults %>%
## select(-Genes) %>%
# do({
# enrResultsGrp <- .
# ## DEBUG enrResultsGrp <- sigEnrResults
## geneLists %>% first(1) %>% select(-ensembl_gene_id) %>% paste0(., collapse="_")
##browser()
# label <- geneLists %>% semi_join(enrResultsGrp) %>% first(1) %>% dplyr::select(-ensembl_gene_id) %>% paste0(., collapse="_")
#
# echo("processing", label)
#
# logPlot <- enrResultsGrp %>%
# ## fix factor order
# mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(Category))) %>%
# ggplot(aes(Term, PValue, fill=Category)) +
# geom_bar(stat="identity")+
# coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(label) +
# scale_y_log10()
#
# ggsave(paste0(resultsBaseName, label, ".enrichmed_terms.pdf"))
# print(logPlot)
#})
##ggsave2()
## include=FALSE, error=TRUE
```{r error=TRUE, echo=FALSE}
warning("dropping levels")
sigEnrResults %<>% mutate(Category=ac(Category)) ## drop unsused level to get consistent color palette
term_category_colors <- create_palette(unique(ac(sigEnrResults$Category)))
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
term_barplot_files <- sigEnrResults %>%
## chop and pad category names
mutate(Term=str_sub(Term, 1, 70) %>% str_pad(70)) %>%
do({
enrResultsGrp <- .
## DEBUG enrResultsGrp <- sigEnrResults
label <- geneLists %>% semi_join(enrResultsGrp) %>% first(1) %>% dplyr::select(-ensembl_gene_id) %>% paste0(., collapse="_")
# warning(paste0("processing terms", paste(ac(unique(enrResultsGrp$Category)), collapse=",")))
logPlot <- enrResultsGrp %>%
## fix factor order
mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(as.factor(Category)))) %>%
ggplot(aes(Term, PValue, fill=Category)) +
geom_bar(stat="identity")+
scale_fill_manual(values = term_category_colors, drop=F, name="Ontology") +
coord_flip() +
xlab("Enriched Terms") +
ggtitle(label) +
scale_y_log10()
# print(logPlot)
## todo use builtin method to create filesystem-compatible name
fileNameLabel <- label %>%
str_replace_all("!=", "ne") %>%
str_replace_all(">", "gt") %>%
str_replace_all("<", "lt") %>%
str_replace_all(fixed("&"), "AND") %>%
str_replace_all(fixed("|"), "OR") %>%
str_replace_all(" ", "_")
# ggsave(paste0("enrichmed_terms__", fileNameLabel, ".pdf"))
# print(logPlot)
tmpPng <- paste0("figures/enrterms__", fileNameLabel, ".png")
ggsave(tmpPng, logPlot, width=10, height = 2+round(nrow(enrResultsGrp)/5), limitsize=FALSE)
data.frame(file=tmpPng)
})
```{r results="asis"}
l_ply(term_barplot_files$file, function(pngFile){ cat(paste0("<img src='", pngFile, "'><br>"))})
########################################################################################################################
```{r eval=nrow(sigEnrResults %>% filter(Category=="KEGG_PATHWAY")) >0}
```
To understand spatio-temporal changes in gene expression better we now overlay enriched kegg pathways with the -log10(q_value) of each contrast. The direction of the expression changes is encoded as color, whereby red indicates that sample_1 is overexpressed. Because we have multiple contrasts of interest, this defines a slice-color barcode for each gene. To relate the barcode to contrasts we define the following slice order:
```{r }
## todo why is tidyr not processing an empty dataframe
keggPathways <- sigEnrResults %>%
filter(Category=="KEGG_PATHWAY") %>%
separate(Term, c('kegg_pathway_id', 'pathway_description'), sep="\\:", remove=F) %>%
with(kegg_pathway_id) %>% ac() %>% unique()
```{r results='asis'}
#if(!exists("keggPathways") | nrow(keggPathways)==0){
# cat("No enriched pathways found")
#}
```{r echo=FALSE}
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
require(pathview)
require(png)
# keggPathways <- keggPathways[1]
#if(nrow(keggPathways)==0){
# echo("no enriched kegg pathways were found in the dataset")
#}else{
#keggOrCode <- "mmu"
keggOrCode <- guess_pathview_species(geneLists$ensembl_gene_id)
## prepare p-value data
sliceData <- overlayData %>%
# dcast(ensembl_gene_id ~ comparison, value.var="plot_score") %>%
column2rownames("ensembl_gene_id")
#sliceData %>% head %>% kable()
data.frame(set=names(sliceData)) %>% mutate(slice_index=row_number()) %>% kable()
plot_pathway <- function(pathwayID, overlayData){
# pathwayID="mmu04015"
# browser()
# echo("processing pathway", pathwayID)
pv.out <- pathview(
gene.data = overlayData,
pathway.id = pathwayID,
species = keggOrCode,
# out.suffix = pathwayID$kegg.description,
# out.suffix = pathwayID,
multi.state = ncol(overlayData)>1,
# kegg.native=F,
# node.sum = "mean", # the method name to calculate node summary given that multiple genes or compounds are mapped to it
limit = list(gene = c(-4,4)),
gene.idtype="ensembl"
)
outfile <- paste0(pathwayID, ".pathview", ifelse(ncol(overlayData)>1, ".multi", ""), ".png")
## move pathway plots into figures sub-directory
figuresPlotFile <- file.path("figures", outfile)
system(paste("mv", outfile, figuresPlotFile))
system(paste("rm", paste0(pathwayID, ".xml"), paste0(pathwayID, ".png")))
## interactive plotting
# ima <- readPNG(outfile)
# plot.new()
# lim <- par()
# rasterImage(ima, lim$usr[1], lim$usr[3], lim$usr[2], lim$usr[4])
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
pv.out$pathway_id=pathwayID
return(pv.out)
}
#keggPathways <- c("mmu04976", "mmu04972", "mmu04810", "mmu04520", "mmu04530", "mmu04270", "mmu04015")
#keggPathways <- c("mmu04015")
pathwayPlots <- keggPathways %>% llply(function(pathwayID){
plot_pathway(pathwayID, sliceData)
})
save(pathwayPlots, file=".pathwayPlots.RData")
# pathwayPlots <- local(get(load("pathwayPlots.RData")))
## prepare tooltips with expression scores
ens2entrez <- quote({
mart <- biomaRt::useDataset(guess_mart(geneLists$ensembl_gene_id), mart = biomaRt::useMart("ensembl"))
biomaRt::getBM(attributes=c('ensembl_gene_id', 'entrezgene', 'external_gene_name'), mart=mart) %>% filter(!is.na(entrezgene))
}) %>% cache_it("ens2entrez") %>% distinct(ensembl_gene_id)
#unlen(ens2entrez$ensembl_gene_id)
toolTipData <- overlayData %>% left_join(ens2entrez)
makeTooltip <- function(entrez_id){
toolTipData %>% filter(entrezgene==entrez_id) %>% dplyr::select(-entrezgene) %>% gather() %$% paste(key, value, sep=": ") %>% paste(collapse="\n") #%>% cat
}
#entrez_id=14679
#entrez_id=34234234234234
#makeTooltip("14679")
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
## simple non-clickable plots
## http://stackoverflow.com/questions/12588323/r-how-to-extract-values-for-the-same-named-elements-across-multiple-objects-of
#unlist(lapply(pathwayPlots, "[[", "plotfile"))
# unlist(lapply(pathwayPlots, "[[", "plotfile")) %>% l_ply(function(pngFile){ cat(paste0("<img src='", pngFile, "'><br>"))})
#cat("
#<style type='text/css'>
# img {
# max-width: 100%;
# }
#</style>
#")
## todo add tooltips with additinal info
## http://stackoverflow.com/questions/5478940/how-to-create-a-html-tooltip-on-top-of-image-map
## extended version with clickable links
pathwayPlots %>% l_ply(function(plotData){
#pngFile="mmu04015.pathview.png"
#plotData <- pathwayPlots[[1]]
#plotData <- unlist(pathwayPlots)
# pathway_id=(basename(pngFile) %>% str_split_fixed("[.]", 2))[,1]
pngFile <- plotData$plotfile
pathway_id=plotData$pathway_id
## create link for image map
keggNodes <- plotData$plot.data.gene %>%
## remove box offset
mutate(x=x-22, y=y-8) %>% ## todo does not work for non-gene elements
mutate(link=paste0("http://www.kegg.jp/dbget-bin/www_bget?", keggOrCode, ":", kegg.names )) %>%
rowwise() %>% do({ curNode=.; mutate(as.df(curNode), tooltip=makeTooltip(as.integer(curNode$kegg.names)))})
## create tooltip by using mapping to
# "http://www.kegg.jp/dbget-bin/www_bget?mmu:16412
## first the image itself
# cat(paste0("<img usemap='#", pathway_id,"' src='", pngFile, "'><br>"))
cat(paste0("<p><div style='width: 2000px'><img style='float: left' usemap='#", pathway_id,"' src='", pngFile, "'></div><br>"))
cat(paste0("<map name='", pathway_id,"'>"))
#keggNodes %>% rowwise() %>% {curNode=.; cat(curNode$name)}
#see http://www.html-world.de/180/image-map/
keggNodes %>% a_ply(1, function(curNode){
rectDef=with(curNode, paste(x, y, x+width, y+height, sep=","))
# paste0("<area href='", curNode$link, "' alt='Text' coords='", rectDef , "' shape='rect'>") %>% cat()
paste0("<area href='", curNode$link, "' title='", curNode$tooltip, "' alt='Text' coords='",rectDef , "' shape='rect'>") %>% cat()
})
cat("</map></p><br>")
})
## respin it for cild inclusion
# require(knitr); setwd("/Volumes/projects/bioinfo/scripts/ngs_tools/dev/common"); spin("david_enrichment.R", knit=F)
```