Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
ngs_tools
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bioinfo
ngs_tools
Commits
2d1b1fe3
Commit
2d1b1fe3
authored
8 years ago
by
Holger Brandl
Browse files
Options
Downloads
Patches
Plain Diff
started gsea enrichment tool
parent
d2e5dec2
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
common/gsea_enrichment.R
+359
-0
359 additions, 0 deletions
common/gsea_enrichment.R
with
359 additions
and
0 deletions
common/gsea_enrichment.R
0 → 100755
+
359
−
0
View file @
2d1b1fe3
#!/usr/bin/env Rscript
#+ echo=FALSE, error=F
# cd
suppressMessages
(
require
(
docopt
))
## todo use textual input here for ease of use
doc
<-
'
Perform an enrichment analysis for a set of genes
Usage:gsea_enrichment.R[options] <sorted_gene_lists_tsv> <group_col>
Options:
--list_id_col Column containing the grouping variable to speparate different lists [default: ]
--project <project_prefix> Name to prefix all generated result files [default: ]
--qcutoff <qcutoff> Use a q-value cutoff of 0.01 instead of a q-value cutoff [default: 0.01]
'
opts
<-
docopt
(
doc
,
commandArgs
(
TRUE
))
## does not work when spining
# opts <- docopt(doc, "--overlay_expr_data ../plot_score_matrix.txt ../degs_by_contrast.txt contrast" )
devtools
::
source_url
(
"https://raw.githubusercontent.com/holgerbrandl/datautils/v1.27/R/core_commons.R"
)
devtools
::
source_url
(
"https://raw.githubusercontent.com/holgerbrandl/datautils/v1.27/R/ggplot_commons.R"
)
devtools
::
source_url
(
"https://raw.githubusercontent.com/holgerbrandl/datautils/v1.27/R/bio/diffex_commons.R"
)
loadpack
(
knitr
)
loadpack
(
DT
)
#loadpack(clusterProfiler)
#devtools::session_info() # nice!
## to fix child support issue with knitr, see also
## http://stackoverflow.com/questions/20030523/knitr-nested-child-documents
## https://github.com/yihui/knitr/issues/38
# todo disabled because root.dir in parent document seems the only working solution
#if(exists('project_dir')) setwd(project_dir)
#print(getwd())
## load the data
geneLists
<-
read_tsv
(
opts
$
sorted_gene_lists_tsv
)
group_col
=
opts
$
group_col
geneLists
%<>%
group_by_
(
.dots
=
group_col
)
#geneLists %<>% filter(cluster %in% c("cluster_1", "cluster_2"))
## TODO expose options to run gesa instead (by assuming that gene lists are sorted)
## see http://www.bioconductor.org/packages/release/bioc/vignettes/clusterProfiler/inst/doc/clusterProfiler.pdf for details
resultsBaseName
<-
if
(
str_length
(
opts
$
project
)
>
0
)
paste0
(
opts
$
project
,
"."
)
else
basename
(
opts
$
sorted_gene_lists_tsv
)
%>%
trim_ext
(
"txt"
)
#%>% paste0(".")
#resultsBaseName=basename(opts$gene_lists_tsv) %>% trim_ext("txt") #%>% paste0(".")
qCutoff
<-
as.numeric
(
opts
$
qcutoff
)
#reload_dplyr()
########################################################################################################################
#' ## Enrichment Analysis
#' Run configuration was
vec2df
(
unlist
(
opts
))
%>%
filter
(
!
str_detect
(
name
,
"^[<-]"
))
%>%
kable
()
#' This analysis was performed using [clusterProfiler](http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html). The following ontologies were tested: Kegg, Go, Reactome, Dose,
listLabels
<-
geneLists
%>%
select
(
-
ensembl_gene_id
)
%>%
distinct
listLabels
%<>%
transform
(
list_label
=
do.call
(
paste
,
c
(
listLabels
,
sep
=
"__"
)))
geneLists
%>%
inner_join
(
listLabels
)
%>%
ggplot
(
aes
(
list_label
))
+
geom_bar
()
+
coord_flip
()
+
ggtitle
(
"gene list sizes to be tested for term enrichment"
)
+
ylab
(
""
)
## todo move to diffex commons
guess_cp_species
<-
function
(
ensIds
){
an_id
<-
ensIds
[
1
]
if
(
str_detect
(
an_id
,
"ENSG"
)){
return
(
"human"
)
}
else
if
(
str_detect
(
an_id
,
"ENSMUSG"
)){
return
(
"mouse"
)
}
else
if
(
str_detect
(
an_id
,
"ENSDARG"
)){
return
(
"zebrafish"
)
}
else
if
(
str_detect
(
an_id
,
"FBgn"
)){
return
(
"fly"
)
}
else
{
stop
(
paste
(
"could not clusterProfiler species name from "
,
an_id
))
}
}
guess_anno_db
<-
function
(
ensIds
){
an_id
<-
ensIds
[
1
]
if
(
str_detect
(
an_id
,
"ENSG"
)){
return
(
"org.Hs.eg.db"
)
}
else
if
(
str_detect
(
an_id
,
"ENSMUSG"
)){
return
(
"org.Mm.eg.db"
)
}
else
if
(
str_detect
(
an_id
,
"ENSDARG"
)){
return
(
"org.Dr.eg.db"
)
}
else
if
(
str_detect
(
an_id
,
"FBgn"
)){
return
(
"org.Dm.eg.db"
)
}
else
{
stop
(
paste
(
"could not anno db mart from "
,
an_id
))
}
}
#source("http://bioconductor.org/biocLite.R")
#biocLite("org.Mm.eg.db")
#biocLite("org.Hs.eg.db")
#biocLite("org.Dr.eg.db")
#biocLite("org.Dm.eg.db")
#biocLite("KEGG.db")
#data(gcSample)
#yy = enrichKEGG(gcSample[[5]], pvalueCutoff=0.01)
#head(summary(yy))
#plot(yy)
## seems broken
cpSpecies
<-
guess_cp_species
(
geneLists
$
ensembl_gene_id
)
annoDb
<-
guess_anno_db
(
geneLists
$
ensembl_gene_id
)
# e.g. "org.Hs.eg.db"
## supported ids
#idType("org.Hs.eg.db")
## convert to entrez gene ids
glMappedRaw
<-
clusterProfiler
::
bitr
(
geneLists
$
ensembl_gene_id
,
fromType
=
"ENSEMBL"
,
toType
=
"ENTREZID"
,
OrgDb
=
annoDb
)
%>%
set_names
(
"ensembl_gene_id"
,
"entrez_gene_id"
)
%>%
right_join
(
geneLists
)
#' Check how many failed to map
count
(
glMappedRaw
,
is.na
(
entrez_gene_id
))
unloadNamespace
(
'clusterProfiler'
)
#loadpack(clusterProfiler)
reload_dplyr
()
glMapped
<-
glMappedRaw
%>%
filter
(
!
is.na
(
entrez_gene_id
))
%>%
select
(
-
ensembl_gene_id
)
%>%
## regroup the data
# group_by_(cluster)
group_by_
(
.dots
=
group_col
%>%
ac
)
## retain just 1500 genes at max per group
#glMappedSub <- glMapped %>% do({shuffle(.) %>% head(1500)})
#count(glMappedSub, cluster)
## sync reactome pacakge to node
#if(Sys.getenv("LSF_SERVERDIR")!="" && dir.exists("/tmp/local_r_packages")){
# system("if [ ! -d '/tmp/local_r_packages/reactome.db/' ]; then scp -r falcon:/tmp/local_r_packages /tmp ; fi")
#}
loadpack
(
ReactomePA
)
cp_test
<-
function
(
geneIds
){
# DEBUG geneIds <- glMapped %>% filter(cluster %in% c("cluster_9")) %$% entrez_gene_id %>% as.integer
# DEBUG geneIds <- head(glMapped,30)$entrez_gene_id
# geneIds=.$entrez_gene_id
if
(
length
(
geneIds
)
>
1500
){
geneIds
<-
sample
(
geneIds
)
%>%
head
(
1500
)
}
echo
(
"testing"
,
length
(
geneIds
),
" genes for enrichment"
)
# PANTHER10_ontology <- read.delim("http://data.pantherdb.org/PANTHER10.0/ontology/Protein_Class_7.0")
# browser()
# pantherResults <- enricher(gene = geneIds, organism = cpSpecies, qvalueCutoff = qCutoff, readable = TRUE, TERM2GENE = PANTHER10_ontology) %>% summary()
keggResults
<-
clusterProfiler
::
enrichKEGG
(
gene
=
geneIds
,
organism
=
cpSpecies
,
qvalueCutoff
=
qCutoff
,
use_internal_data
=
T
)
%>%
summary
()
reactomeResults
<-
enrichPathway
(
gene
=
geneIds
,
organism
=
cpSpecies
,
qvalueCutoff
=
qCutoff
)
%>%
summary
()
goResultsCC
<-
clusterProfiler
::
enrichGO
(
gene
=
geneIds
,
OrgDb
=
annoDb
,
qvalueCutoff
=
qCutoff
,
ont
=
"CC"
)
%>%
summary
()
goResultsMF
<-
clusterProfiler
::
enrichGO
(
gene
=
geneIds
,
OrgDb
=
annoDb
,
qvalueCutoff
=
qCutoff
,
ont
=
"MF"
)
%>%
summary
()
goResultsBP
<-
clusterProfiler
::
enrichGO
(
gene
=
geneIds
,
OrgDb
=
annoDb
,
qvalueCutoff
=
qCutoff
,
ont
=
"BP"
)
%>%
summary
()
#cp-bug: if no pathways are enriched odd strucuture is retured ##todo file issue
if
(
!
(
"data.frame"
%in%
class
(
keggResults
)))
keggResults
<-
filter
(
goResultsBP
,
Description
=
"foobar"
)
enrResults
<-
rbind_list
(
mutate
(
keggResults
,
ontology
=
"kegg"
),
mutate
(
reactomeResults
,
ontology
=
"reactome"
),
mutate
(
goResultsBP
,
ontology
=
"go_bp"
),
mutate
(
goResultsMF
,
ontology
=
"go_mf"
),
mutate
(
goResultsCC
,
ontology
=
"go_cc"
)
)
enrResults
# echo("numResults", nrow(enrResults))
}
## prety slow
enrResults
<-
quote
(
glMapped
%>%
do
(
cp_test
(
.
$
entrez_gene_id
)))
%>%
cache_it
(
paste0
(
"enrdata_"
,
digest
(
glMapped
)))
## run the actual enrichment test for all clusters and all ontologies
#library(foreach); library(doMC); registerDoMC(cores=20)
## https://support.bioconductor.org/p/38541/
## library(GOstats) inside your %dopar% loop. And then start with a fresh session, so GOstats is not loaded outside the loop. It worked for me.
#enrResults <- dlply(glMapped, groups(glMapped) %>% ac, function(curGroup){
# cp_test(curGroup$entrez_gene_id)
#}, .progress="text", .parallel=F) ##%>% cache_it(paste0("enrdata_", digest(glMapped)))
#rbind_all(enrResults)
#reload_dplyr()
#enrResults %<>% rename(Category=Description)
#enrResults %<>% rename(ontology=Category)
## remove to clumsy gene_id columns
enrResults
%<>%
select
(
-
geneID
)
write_tsv
(
enrResults
,
path
=
paste0
(
resultsBaseName
,
"enrResults.txt"
))
# enrResults <- read.delim(paste0(resultsBaseName, "enrResults.txt"))
#' [Enrichment Results](`r paste0(resultsBaseName, "enrResults.txt")`)
loadpack
(
DT
)
datatable
(
enrResults
)
#enrResults %>% ggplot(aes(pvalue)) + geom_histogram() + scale_x_log10()
#enrResults %>% ggplot(aes(ontology)) + facet_wrap(~cluster) + geom_bar() + rot_x_lab()
#facetSpecs <- paste("~", groups(geneLists) %>% ac %>% paste(collapse=" + "))
facetSpecs
<-
paste
(
"~"
,
group_col
%>%
ac
%>%
paste
(
collapse
=
" + "
))
#' Visualize term-pvalues per list
#http://stackoverflow.com/questions/11028353/passing-string-variable-facet-wrap-in-ggplot-using-r
enrResults
%>%
ggplot
(
aes
(
ontology
))
+
facet_wrap
(
as.formula
(
facetSpecs
),
ncol
=
3
)
+
geom_bar
()
+
rot_x_lab
()
+
ggtitle
(
"enriched term counts by cluster"
)
enrResults
%<>%
mutate
(
num_term_genes
=
str_split_fixed
(
BgRatio
,
fixed
(
"/"
),
2
)[,
1
]
%>%
as.numeric
)
#' Keep at max 100 terms for visualzation per group
#if(table(enrResults$cluster))
## restablish the grouping and limit results per group to 100
#enrResults %<>% group_by_(.dots=groups(geneLists) %>% ac)
#enrResults %<>% group_by_(.dots=group_col)
#enrResults %<>% sample_frac(1) %>% filter((row_number()<100)) %>% group_by_(.dots=group_col)
#tt <- enrResults %>% group_by_(.dots=c(group_col,"ontology")) %>% arrange(-qvalue) %>% dplyr::slice(1:10)
#enrResults %>% filter(cluster=="cluster_1")
#enrResults %>% group_by_(.dots=c(group_col)) %>% ggplot(aes(pvalue, qvalue, color=ontology))+ geom_point()
#enrResults %>% group_by_(.dots=c(group_col)) %>% ggplot(aes(pvalue, p.adjust, color=cluster))+ geom_point()
erPlotData
<-
enrResults
%>%
group_by_
(
.dots
=
c
(
group_col
))
%>%
arrange
(
qvalue
)
%>%
slice
(
1
:
15
)
%>%
## regroup because otherwise dplyr complains about corrupt df (which looks like a bug)
group_by_
(
.dots
=
c
(
group_col
))
#count(erPlotData, cluster)
#+ include=FALSE, eval=FALSE
## plot the enrichment results
#sigEnrResults %>% group_by(Category, add=T) %>% do({
# logPlot <- . %>% ggplot(aes(Term, PValue)) +
# geom_bar(stat="identity")+coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(.$Category[1]) +
# scale_y_log10()
# print(logPlot)
#})
#sigEnrResults %>%
## select(-Genes) %>%
# do({
# enrResultsGrp <- .
# ## DEBUG enrResultsGrp <- sigEnrResults
## geneLists %>% first(1) %>% select(-ensembl_gene_id) %>% paste0(., collapse="_")
##browser()
# label <- geneLists %>% semi_join(enrResultsGrp) %>% first(1) %>% dplyr::select(-ensembl_gene_id) %>% paste0(., collapse="_")
#
# echo("processing", label)
#
# logPlot <- enrResultsGrp %>%
# ## fix factor order
# mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(Category))) %>%
# ggplot(aes(Term, PValue, fill=Category)) +
# geom_bar(stat="identity")+
# coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(label) +
# scale_y_log10()
#
# ggsave(paste0(resultsBaseName, label, ".enrichmed_terms.pdf"))
# print(logPlot)
#})
##ggsave2()
#+ error=TRUE, echo=FALSE
warning
(
"dropping levels"
)
erPlotData
%<>%
mutate
(
ontology
=
ac
(
ontology
))
## drop unsused level to get consistent color palette
erPlotData
%<>%
rename
(
Term
=
Description
)
term_category_colors
<-
create_palette
(
unique
(
ac
(
erPlotData
$
ontology
)))
figDir
<-
"enr_charts"
dir.create
(
figDir
)
term_barplot_files
<-
erPlotData
%>%
## chop and pad category names
mutate
(
Term
=
str_sub
(
Term
,
1
,
70
)
%>%
str_pad
(
70
))
%>%
do
({
enrResultsGrp
<-
.
## DEBUG enrResultsGrp <- erPlotData %>% ungroup() %>% filter(contrast==contrast[1])
# with(enrResultsGrp, as.data.frame(table(contrast)))
# browser()
## DEBUG enrResultsGrp <- sigEnrResults
# label <- geneLists %>% semi_join(enrResultsGrp) %>% first(1) %>% dplyr::select(-ensembl_gene_id) %>% paste0(., collapse="_")
label
<-
subset
(
enrResultsGrp
,
select
=
group_col
)[
1
,
1
]
%>%
as.matrix
%>%
ac
#stopifnot(all(!is.na(enrResultsGrp$Term)))
#stopifnot(all(!is.na(enrResultsGrp$ontology)))
#stopifnot(all(!is.na(enrResultsGrp$num_term_genes)))
#browser()
# warning(paste0("processing terms", paste(ac(unique(enrResultsGrp$ontology)), collapse=",")))
logPlot
<-
enrResultsGrp
%>%
## fix factor order
# mutate(Term=reorder(Term, -qvalue) %>% reorder(as.integer(as.factor(ontology)))) %>%
mutate
(
Term
=
reorder
(
Term
,
-
qvalue
))
%>%
ggplot
(
aes
(
Term
,
num_term_genes
,
fill
=-
log10
(
qvalue
),
color
=
ontology
))
+
geom_bar
(
stat
=
"identity"
)
+
scale_color_manual
(
values
=
term_category_colors
,
drop
=
F
,
name
=
"Ontology"
)
+
coord_flip
()
+
xlab
(
"Enriched Terms"
)
+
ggtitle
(
label
)
+
scale_y_log10
()
# print(logPlot)
## todo use builtin method to create filesystem-compatible name
fileNameLabel
<-
label
%>%
str_replace_all
(
"!="
,
"ne"
)
%>%
str_replace_all
(
">"
,
"gt"
)
%>%
str_replace_all
(
"<"
,
"lt"
)
%>%
str_replace_all
(
fixed
(
"&"
),
"AND"
)
%>%
str_replace_all
(
fixed
(
"|"
),
"OR"
)
%>%
str_replace_all
(
" "
,
"_"
)
# ggsave(paste0("enrichmed_terms__", fileNameLabel, ".pdf"))
# print(logPlot)
stopifnot
(
str_length
(
fileNameLabel
)
>
0
)
tmpPng
<-
paste0
(
figDir
,
"/enrterms__"
,
fileNameLabel
,
".png"
)
ggsave
(
tmpPng
,
logPlot
,
width
=
10
,
height
=
2
+
round
(
nrow
(
enrResultsGrp
)
/
5
),
limitsize
=
FALSE
)
data.frame
(
file
=
tmpPng
)
})
#+ results="asis"
l_ply
(
term_barplot_files
$
file
,
function
(
pngFile
){
cat
(
paste0
(
"<img src='"
,
pngFile
,
"'><br>"
))})
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment