Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
ngs_tools
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bioinfo
ngs_tools
Commits
c1c8e5ec
Commit
c1c8e5ec
authored
10 years ago
by
Holger Brandl
Browse files
Options
Downloads
Patches
Plain Diff
cont. refined dba analysis
parent
cce5b893
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
chipseq_workflow/cs_compare_regions.R
+0
-188
0 additions, 188 deletions
chipseq_workflow/cs_compare_regions.R
with
0 additions
and
188 deletions
chipseq_workflow/cs_compare_regions.R
deleted
100755 → 0
+
0
−
188
View file @
cce5b893
#!/usr/bin/env Rscript
devtools
::
source_url
(
"https://raw.githubusercontent.com/holgerbrandl/datautils/v1.4/R/core_commons.R"
)
devtools
::
source_url
(
"https://raw.githubusercontent.com/holgerbrandl/datautils/v1.4/R/ggplot_commons.R"
)
#devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.4/R/bio/diffex_commons.R")
devtools
::
source_url
(
"https://raw.githubusercontent.com/holgerbrandl/datautils/master/R/bio/diffex_commons.R"
)
require
(
tidyr
)
require
(
knitr
)
require.auto
(
digest
)
#' # Region Count Analysis
## spin.R
geneInfo
<-
quote
({
mart
<-
biomaRt
::
useDataset
(
"drerio_gene_ensembl"
,
mart
=
biomaRt
::
useMart
(
"ensembl"
))
c
(
"ensembl_gene_id"
,
"external_gene_name"
,
"description"
,
"chromosome_name"
,
"start_position"
,
"end_position"
)
%>%
biomaRt
::
getBM
(
mart
=
mart
)
})
%>%
cache_it
()
countData
<-
list.files
(
"."
,
"region_counts.txt"
,
f
=
T
)
%>%
ldply
(
function
(
countFile
){
read.delim
(
countFile
,
header
=
F
)
%>%
set_names
(
c
(
"chromosome_name"
,
"feature_start"
,
"feature_end"
,
"ensembl_gene_id"
,
"score"
,
"strand"
,
"feature_type"
,
"tag_count"
))
%>%
mutate
(
sample
=
basename
(
countFile
)
%>%
str_split_fixed
(
"[.]"
,
2
)
%>%
subset
(
select
=
1
))
})
%>%
## calcualte feature length for normalization
mutate
(
feature_length
=
feature_end
-
feature_start
+1
)
%>%
## discard unused columns
select
(
-
c
(
score
,
strand
,
feature_start
,
feature_end
))
%>%
## extract time and protein
separate
(
sample
,
c
(
"protein"
,
"timepoint"
),
remove
=
F
)
#' count data structure
countData
%>%
sample_n
(
10
)
%>%
kable
()
write.delim
(
countData
,
file
=
"countData.txt"
)
# countData <- read.delim("countData.txt")
#' [countData](countData.txt)
#corMat <- countData %>% select(ensembl_gene_id, feature_type, tag_count, sample) %>% dcast(ensembl_gene_id + feature_type ~ sample, value.var="tag_count")
#require(GGally)
#corMat %>% filter(feature_type=="tss_1kb") %>% select(-feature_type) %>% ggpairs()
## does not work because of logarithmic scale
## also load library sizes for normalization
libSizes
<-
read.delim
(
"algn_counts.txt"
,
header
=
F
)
%>%
set_names
(
c
(
"library_size"
,
"sample"
))
## calculate fpkm normalized counts
countDataNorm
<-
countData
%>%
merge
(
libSizes
,
all.x
=
T
)
%>%
group_by
(
feature_type
,
protein
,
timepoint
)
%>%
mutate
(
tag_fpkm
=
(
1E9
*
tag_count
)
/
(
feature_length
*
library_size
))
# mutate(tag_fpkm=(1E9*tag_count)/(feature_length*sum(tag_count))) %>%
# mutate(tag_fpkm100=100*tag_fpkm)
#' apply fpkm normalization for expression profile visualzation
countDataNorm
%>%
sample_n
(
10
)
%>%
kable
()
countDataNorm
%$%
unique
(
sample
)
countDataNorm
%>%
sample_n
(
10000
)
%>%
ggplot
(
aes
(
tag_fpkm
))
+
geom_histogram
()
+
scale_x_log10
(
labels
=
comma
)
+
ggtitle
(
"fpkm dist overview"
)
#+ fig.width=20, fig.height=18
countDataNorm
%>%
ggplot
(
aes
(
tag_fpkm
))
+
geom_histogram
()
+
facet_grid
(
feature_type
~
sample
)
+
scale_x_log10
()
+
ggtitle
(
"FPKM distirbution by sample and region type"
)
#' Where is more signal
fpkmSummary
<-
countDataNorm
%>%
group_by
(
feature_type
,
sample
)
%>%
summarize
(
total_fpkm
=
sum
(
tag_fpkm
))
fpkmSummary
%>%
ggplot
(
aes
(
sample
,
total_fpkm
,
fill
=
feature_type
))
+
geom_bar
(
position
=
"dodge"
,
stat
=
"identity"
)
+
ggtitle
(
"ChIP Signal Enrichment by Region"
)
## export a count matrices for dba
exportRegion
=
"tss_2kb"
countDataNorm
%>%
ungroup
()
%>%
## later do for each feature type
# group_by(feature_type
filter
(
feature_type
==
exportRegion
)
%>%
## todo fix replicate hack here
transmute
(
ensembl_gene_id
,
tag_count
,
sample
=
paste0
(
sample
,
".1"
))
%>%
spread
(
sample
,
tag_count
)
%>%
write.delim
(
paste0
(
"replicate_counts."
,
exportRegion
,
".txt"
))
write.delim
(
countDataNorm
,
file
=
"countDataNorm.txt"
)
# countDataNorm <- read.delim("countDataNorm.txt")
#' [countDataNorm](countDataNorm.txt)
with
(
countDataNorm
,
as.data.frame
(
table
(
timepoint
,
protein
)))
#' Performing differential binding analysis for region type `r exportRegion`
countMatrix
<-
countData
%>%
filter
(
feature_type
==
exportRegion
)
%>%
# group_by(ensembl_gene_id) %>% filter(max(tag_count)>0) %>%
dcast
(
ensembl_gene_id
~
sample
,
value.var
=
"tag_count"
)
%>%
column2rownames
(
"ensembl_gene_id"
)
%>%
as.matrix
()
countMatrix
[
is.na
(
countMatrix
)]
<-
0
cor
(
countMatrix
,
method
=
"spearman"
)
%>%
melt
()
%>%
ggplot
(
aes
(
Var1
,
Var2
,
fill
=
value
))
+
geom_tile
()
+
rotXlab
()
+
ggtitle
(
"count correlation"
)
fpkmMatrix
<-
countDataNorm
%>%
filter
(
feature_type
==
exportRegion
)
%>%
# group_by(ensembl_gene_id) %>% filter(max(tag_count)>0) %>%
dcast
(
ensembl_gene_id
~
sample
,
value.var
=
"tag_fpkm"
)
%>%
column2rownames
(
"ensembl_gene_id"
)
%>%
as.matrix
()
fpkmMatrix
[
is.na
(
fpkmMatrix
)]
<-
0
cor
(
fpkmMatrix
,
method
=
"spearman"
)
%>%
melt
()
%>%
ggplot
(
aes
(
Var1
,
Var2
,
fill
=
value
))
+
geom_tile
()
+
rotXlab
()
+
ggtitle
(
"fpkm correlation"
)
#' Correlation Scatter Plots
## all vs all correlation
allCor
<-
countDataNorm
%>%
ungroup
()
%>%
filter
(
feature_type
==
exportRegion
)
%>%
select
(
ensembl_gene_id
,
tag_fpkm
,
sample
)
%>%
merge
(
.
,
.
,
by
=
c
(
"ensembl_gene_id"
))
%>%
rename
(
sample_1
=
sample.x
,
sample_2
=
sample.y
)
allCor
%>%
ggplot
(
aes
(
tag_fpkm.x
,
tag_fpkm.y
))
+
geom_point
(
alpha
=
0.05
)
+
ggtitle
(
"Timepoint Correlation"
)
+
facet_grid
(
sample_1
~
sample_2
)
+
# facet_wrap(timepoint+sample_1~sample_2)+
# scale_x_log10() + scale_y_log10()
scale_x_log10
(
labels
=
comma
,
limits
=
c
(
0.01
,
10000
))
+
scale_y_log10
(
labels
=
comma
,
limits
=
c
(
0.01
,
10000
))
+
geom_abline
(
slope
=
1
,
alpha
=
0.3
,
size
=
2
,
color
=
"red"
)
+
xlab
(
"fpkm"
)
+
ylab
(
"fpkm"
)
#' Timepoint correlation
timeCor
<-
countDataNorm
%>%
ungroup
()
%>%
filter
(
feature_type
==
"tss_2kb"
)
%>%
select
(
ensembl_gene_id
,
tag_fpkm
,
protein
,
timepoint
)
%>%
merge
(
.
,
.
,
by
=
c
(
"ensembl_gene_id"
,
"protein"
))
%>%
filter
(
ac
(
timepoint.x
)
>
ac
(
timepoint.y
))
%>%
rename
(
sample_1
=
timepoint.x
,
sample_2
=
timepoint.y
)
timeCorPlot
<-
timeCor
%>%
ggplot
(
aes
(
tag_fpkm.x
,
tag_fpkm.y
))
+
geom_point
(
alpha
=
0.05
)
+
ggtitle
(
"Timepoint Correlation"
)
+
facet_grid
(
sample_1
~
protein
+
sample_2
)
+
# facet_wrap(timepoint+sample_1~sample_2)+
# scale_x_log10() + scale_y_log10()
scale_x_log10
(
labels
=
comma
,
limits
=
c
(
0.01
,
10000
))
+
scale_y_log10
(
labels
=
comma
,
limits
=
c
(
0.01
,
10000
))
+
geom_abline
(
slope
=
1
,
alpha
=
0.3
,
size
=
2
,
color
=
"red"
)
+
xlab
(
"fpkm"
)
+
ylab
(
"fpkm"
)
timeCorPlot
ggsave2
(
timeCorPlot
,
outputFormat
=
"pdf"
,
width
=
12
,
height
=
10
)
#
#corrPlot <- function(fpkmData){
## fpkmData <- mmusDiff
# hitCounts <- subset(fpkmData, isHit) %>%
# with(as.data.frame(table(sample_1, sample_2, sample_1_overex=log2_fold_change<0))) %>%
# subset(Freq>0) %>% mutate(sample_1_overex=as.logical(sample_1_overex))
#
# ggplot(fpkmData, aes(value_1, value_2, color=isHit)) +
# scale_color_manual(values=c("darkgrey", "red"))+
## scale_size_manual(values=c(0.4, 4)) +
# geom_point(alpha=0.6, size=2) +
## scale_x_log10(labels=comma) + scale_y_log10(labels=comma) +
# scale_x_log10(labels=comma, limits=c(0.01, 10000)) + scale_y_log10(labels=comma, limits=c(0.01, 10000)) +
# facet_grid(sample_1 ~ sample_2) +
# geom_text(aes(label=Freq), color="black", data=hitCounts %>% mutate(value_1=500., value_2=0.1), subset=.(sample_1_overex)) +
# geom_text(aes(label=Freq),color="black", data=hitCounts %>% mutate(value_1=0.1, value_2=500.), subset=.(!sample_1_overex)) +
# theme_bw() + xlab("") + ylab("") + guides(colour = guide_legend(override.aes = list(size=4)))
#}
#
#mmusFpkmCorr <- allDiff %>% arrange(isHit) %>% corrPlot() + ggtitle("Mouse FPKM Correlation") + facet_grid(; mmusFpkmCorr
#
#ggsave2(mmusFpkmCorr, outputFormat="png", width=9, height=7)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment