Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
ngs_tools
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bioinfo
ngs_tools
Commits
dac77bc0
Commit
dac77bc0
authored
9 years ago
by
Holger Brandl
Browse files
Options
Downloads
Patches
Plain Diff
fixed diffbind analysis by timepoint
parent
8f5633ac
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
misc/enr_simple.R
+126
-0
126 additions, 0 deletions
misc/enr_simple.R
with
126 additions
and
0 deletions
misc/enr_simple.R
0 → 100755
+
126
−
0
View file @
dac77bc0
########################################################################################################################
#' ## Term enrichment
#+ echo=FALSE
#' This analysis was performed using [David](http://david.abcc.ncifcrf.gov/). The following ontologies were tested: `r paste(ontologies, collapse=', ')`
geneLists
<-
degs
%>%
transmute
(
ensembl_gene_id
,
list_id
=
paste
(
sample_1
,
"vs"
,
sample_2
))
if
(
nrow
(
contrasts
)
<
4
){
geneLists
<-
rbind_list
(
geneLists
,
degs
%>%
filter
(
s1_overex
)
%>%
transmute
(
ensembl_gene_id
,
list_id
=
paste
(
sample_1
,
">"
,
sample_2
)),
degs
%>%
filter
(
!
s1_overex
)
%>%
transmute
(
ensembl_gene_id
,
list_id
=
paste
(
sample_1
,
"<"
,
sample_2
))
)
}
## additional overlaps before doing the intersection analysis
geneLists
%>%
count
(
list_id
)
%>%
kable
()
intersectLists
<-
function
(
geneLists
,
listIdA
,
listIdB
,
intersectListId
)
{
commonGenes
<-
setdiff
(
filter
(
geneLists
,
list_id
==
listIdA
)
$
ensembl_gene_id
,
filter
(
geneLists
,
list_id
==
listIdB
)
$
ensembl_gene_id
)
data.frame
(
list_id
=
intersectListId
,
ensembl_gene_id
=
commonGenes
)
}
## make this project specific setting
#with(geneLists, as.data.frame(table(list_id))) %$% ac(unique(list_id))
#if(any(str_detect(geneLists$list_id, "cyst"))){
# geneLists <- intersectLists(geneLists, "liver != unpolarised", "cyst != unpolarised", "unp_liv & unp_cys") %>% rbind_list(geneLists)
#}
geneLists
<-
distinct
(
geneLists
)
## just precaution in case of multiple evals of statements above
#+ eval=T
enrResults
<-
quote
(
geneLists
%>%
group_by
(
list_id
)
%>%
do
(
davidAnnotationChart
(
.
$
ensembl_gene_id
)))
%>%
cache_it
(
paste0
(
"enrdata_"
,
digest
(
geneLists
)))
write.delim
(
enrResults
,
file
=
"enrResults.txt"
)
# enrResults <- read.delim("enrResults.txt")
#' [Enrichment Results](enrResults.txt)
#ac(annoChart$Genes[1]) %>% str_split(", ") %>% unlist() %>% length()
#
#' Because David is not too strigent by default we extract just those terms for which Bonferroni<0.01
sigEnrResults
<-
filter
(
enrResults
,
Bonferroni
<
0.01
)
#' results='asis', error=TRUE
if
(
nrow
(
sigEnrResults
)
>
0
){
sigEnrResults
%>%
select
(
-
Genes
)
%>%
kable
(
"html"
,
table.attr
=
"class='dtable'"
,
escape
=
F
)
}
else
{
echo
(
"no highly significant terms found"
)
sigEnrResults
=
data.frame
(
Category
=
factor
(
c
(),
c
()))
}
write.delim
(
sigEnrResults
,
file
=
"sigEnrResults.txt"
)
# sigEnrResults <- read.delim("sigEnrResults.txt")
#' [Very Significant Terms](sigEnrResults.txt)
## plot the enrichment results
#sigEnrResults %>% group_by(Category, add=T) %>% do({
# logPlot <- . %>% ggplot(aes(Term, PValue)) +
# geom_bar(stat="identity")+coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(.$Category[1]) +
# scale_y_log10()
# print(logPlot)
#})
#+ include=FALSE, eval=exists("sigEnrResults")
## include=FALSE, eval=nrow(sigEnrResults)>1
warning
(
"dropping levels"
)
sigEnrResults
%<>%
mutate
(
Category
=
ac
(
Category
))
## drop unsused level to get consistent color palette
term_category_colors
<-
create_palette
(
unique
(
ac
(
sigEnrResults
$
Category
)))
term_barplot_files
<-
sigEnrResults
%>%
## chop and pad category names
mutate
(
Term
=
str_sub
(
Term
,
1
,
70
)
%>%
str_pad
(
70
))
%>%
do
({
#browser()
enrResultsGrp
<-
.
## DEBUG enrResultsGrp <- sigEnrResults
label
<-
enrResultsGrp
$
list_id
[
1
]
if
(
nrow
(
enrResultsGrp
)
==
0
)
return
(
data.frame
())
browser
()
# warning(paste0("processing terms", paste(ac(unique(enrResultsGrp$Category)), collapse=",")))
logPlot
<-
enrResultsGrp
%>%
## fix factor order
mutate
(
Term
=
reorder
(
Term
,
-
PValue
)
%>%
reorder
(
as.integer
(
as.factor
(
Category
))))
%>%
ggplot
(
aes
(
Term
,
PValue
,
fill
=
Category
))
+
geom_bar
(
stat
=
"identity"
)
+
scale_fill_manual
(
values
=
term_category_colors
,
drop
=
F
,
name
=
"Ontology"
)
+
coord_flip
()
+
xlab
(
"Enriched Terms"
)
+
ggtitle
(
label
)
+
scale_y_log10
()
fileNameLabel
<-
label
%>%
str_replace_all
(
"!="
,
"ne"
)
%>%
str_replace_all
(
">"
,
"gt"
)
%>%
str_replace_all
(
"<"
,
"lt"
)
%>%
str_replace_all
(
fixed
(
"&"
),
"AND"
)
%>%
str_replace_all
(
fixed
(
"|"
),
"OR"
)
%>%
str_replace_all
(
" "
,
"_"
)
# ggsave(paste0("enrichmed_terms__", fileNameLabel, ".pdf"))
# print(logPlot)
tmpPng
<-
paste0
(
"enrterms__"
,
fileNameLabel
,
".png"
)
ggsave
(
tmpPng
,
logPlot
,
width
=
10
,
height
=
2
+
round
(
nrow
(
enrResultsGrp
)
/
5
),
limitsize
=
FALSE
)
data.frame
(
file
=
tmpPng
)
})
#+ results="asis", error=TRUE
l_ply
(
term_barplot_files
$
file
,
function
(
pngFile
){
cat
(
paste0
(
"<img src='"
,
pngFile
,
"'><br>"
))})
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment