Newer
Older

Lars Hubatsch
committed
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [

Lars Hubatsch
committed
"# Adapted for ternary/binary mixture (FRAP project) from Standard Cahn-Hilliard Example at \n",
"# https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/cahn-hilliard/demo_cahn-hilliard.py.rst#rst-header-id1\n",

Lars Hubatsch
committed
"# The resulting .pvd file can be opened using default settings in ParaView\n",
"\n",
"import random\n",
"from dolfin import *\n",
"# Class representing the intial conditions\n",
"class InitialConditions(UserExpression):\n",
" def __init__(self, **kwargs):\n",
" random.seed(2 + MPI.rank(MPI.comm_world))\n",
" super().__init__(**kwargs)\n",
" def eval(self, values, x):\n",

Lars Hubatsch
committed
" if x[0] > 0.5:\n",
" values[0] = 0.63 + 0.02*(0.5 - random.random())\n",
" else:\n",
" values[0] = 0.4 \n",

Lars Hubatsch
committed
" values[1] = 0.0\n",
" def value_shape(self):\n",
" return (2,)\n",
"# Class for interfacing with the Newton solver\n",
"class CahnHilliardEquation(NonlinearProblem):\n",
" def __init__(self, a, L):\n",
" NonlinearProblem.__init__(self)\n",
" self.L = L\n",
" self.a = a\n",
" def F(self, b, x):\n",
" assemble(self.L, tensor=b)\n",
" def J(self, A, x):\n",
" assemble(self.a, tensor=A)\n",
"# Model parameters\n",

Lars Hubatsch
committed
"dt = 5.0e-10 # time step\n",

Lars Hubatsch
committed
"theta = 0.5 # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicolson\n",

Lars Hubatsch
committed
"kBTG0 = 1.0e-6\n",
"X = 3.5\n",

Lars Hubatsch
committed
"kappa = 2\n",
"# Form compiler options\n",
"parameters[\"form_compiler\"][\"optimize\"] = True\n",
"parameters[\"form_compiler\"][\"cpp_optimize\"] = True\n",
"# Create mesh and build function space\n",

Lars Hubatsch
committed
"mesh = UnitSquareMesh.create(96, 1, CellType.Type.quadrilateral)\n",

Lars Hubatsch
committed
"P1 = FiniteElement(\"Lagrange\", mesh.ufl_cell(), 1)\n",
"ME = FunctionSpace(mesh, P1*P1)\n",
"# Define trial and test functions\n",
"du = TrialFunction(ME)\n",
"q, v = TestFunctions(ME)\n",
"# Define functions\n",
"u = Function(ME) # current solution\n",
"u0 = Function(ME) # solution from previous converged step\n",
"\n",
"# Split mixed functions\n",
"dc, dmu = split(du)\n",
"c, mu = split(u)\n",
"c0, mu0 = split(u0)\n",
"# Create intial conditions and interpolate\n",
"u_init = InitialConditions(degree=1)\n",
"u.interpolate(u_init)\n",
"u0.interpolate(u_init)\n",
"# Compute the chemical potential df/dc\n",

Lars Hubatsch
committed
"# c = variable(c)\n",

Lars Hubatsch
committed
"# mu_(n+theta)\n",
"mu_mid = (1.0-theta)*mu0 + theta*mu\n",
"c_mid = (1.0-theta)*c0 + theta*c\n",
"# Weak statement of the equations\n",
"# L0 = c*q*dx - c0*q*dx + dt*dot(grad(mu_mid), grad(q))*dx\n",
"# L0 needs to include the next time step via theta, while L1 is indendent of \n",
"# time and therefore doesn't need discretization in time, check this is true with Chris!\n",
"# In particular the c_mid in L0!\n",

Lars Hubatsch
committed
"L0 = (1/kBTG0*(c*q*dx - c0*q*dx) - dt*((1+2*X*c_mid)*mu_mid- 2*X*dot(grad(mu_mid), grad(mu_mid))\n",

Lars Hubatsch
committed
" +2*X*(2*c_mid*dot(grad(c_mid), grad(c_mid)) + c_mid**2*mu_mid) \n",
" -kappa*(dot(grad(c_mid), grad(mu_mid)) - 2*c_mid*dot(grad(c_mid), grad(mu_mid))))*q*dx\n",
" -kappa*(c_mid**2*dot(grad(mu_mid), grad(q))+2*c_mid*q*dot(grad(mu_mid), grad(c_mid)))*dx)\n",
"# L1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx\n",
"L1 = mu*v*dx + dot(grad(c), grad(v))*dx\n",
"L = L0 + L1\n",
"# Compute directional derivative about u in the direction of du (Jacobian)\n",
"a = derivative(L, u, du)\n",
"# Create nonlinear problem and Newton solver\n",
"problem = CahnHilliardEquation(a, L)\n",
"solver = NewtonSolver()\n",
"solver.parameters[\"linear_solver\"] = \"lu\"\n",
"solver.parameters[\"convergence_criterion\"] = \"incremental\"\n",
"solver.parameters[\"relative_tolerance\"] = 1e-6\n",
"# Output file\n",
"file = File(\"output.pvd\", \"compressed\")\n",
"\n",
"# Step in time\n",
"t = 0.0\n",

Lars Hubatsch
committed
"T = 200*dt\n",

Lars Hubatsch
committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"while (t < T):\n",
" t += dt\n",
" u0.vector()[:] = u.vector()\n",
" solver.solve(problem, u.vector())\n",
" file << (u.split()[0], t)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}