Newer
Older
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from __future__ import print_function\n",
"from fenics import *\n",
"from dolfin import *\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import time\n",
"from math import *\n",
"\n",
"set_log_level(40)\n",
"\n",
"def point_expr(c, p_list, Phi_tot_int, Phi_tot_ext, Phi_tot_init,\n",
" rad_drop, tol):\n",
" s = ('sqrt(pow((x[0]-'+str(c[0])+'),2)+pow((x[1]-'+str(c[1])+'),2)+'+\n",
" 'pow((x[2]-'+str(c[2])+'),2))')\n",
" s = s + '<= '+str(rad_drop)+' ? '+str(Phi_tot_init)+' : '\n",
" for p in p_list:\n",
" y = ('sqrt(pow((x[0]-'+str(p[0])+'),2)+pow((x[1]-'+str(p[1])+'),2)+'+\n",
" 'pow((x[2]-'+str(p[2])+'),2))')\n",
" s = s + y + '<= '+str(rad_drop)+' ? '+str(Phi_tot_int)+' : '\n",
" s = s + str(Phi_tot_ext)\n",
" return Expression(s, degree=2, tol=tol)\n",
"\n",
"tol = 1E-14\n",
"dt = 0.1\n",
"rad_drop = 0.25\n",

Lars Hubatsch
committed
"Phi_tot_int = 0.99\n",
"Phi_tot_ext = 0.001\n",
"Phi_tot_initial = 0\n",

Lars Hubatsch
committed
"\n",
"m = ['Meshes/multi_drop_gauss.xml', 'Meshes/multi_drop_gauss_med.xml',\n",
" 'Meshes/multi_drop_gauss_far.xml']\n",
"point_lists = [[[4, 4.5, 0.5], [4, 3.5, 0.5], [3.5, 4, 0.5], [4.5, 4, 0.5]],\n",
" [[4, 5, 0.5], [4, 3, 0.5], [3, 4, 0.5], [5, 4, 0.5]],\n",
" [[4, 5.5, 0.5], [4, 2.5, 0.5], [2.5, 4, 0.5], [5.5, 4, 0.5]]]\n",
"cs = []\n",
"for j in range(len(m)):\n",
" mesh = Mesh(m[j])\n",
" V = FunctionSpace(mesh, 'CG', 1)\n",
" Phi_u = Function(V)\n",
" v = TestFunction(V)\n",

Lars Hubatsch
committed
"\n",
" Phi_u0 = Function(V)\n",
" Phi_tot = Function(V)\n",

Lars Hubatsch
committed
"\n",
" Phi_u0 = point_expr([4,4,0.5], point_lists[j],\n",
" Phi_tot_int, Phi_tot_ext, Phi_tot_initial, rad_drop,\n",
" tol)\n",
" Phi_u0 = interpolate(Phi_u0, V)\n",

Lars Hubatsch
committed
"\n",
" Phi_tot = point_expr([4,4,0.5], point_lists[j],\n",
" Phi_tot_int, Phi_tot_ext, Phi_tot_int, rad_drop, tol)\n",
" Phi_tot = interpolate(Phi_tot,V)\n",
" Form = (inner((Phi_u-Phi_u0)/dt, v) -\n",
" inner(((1-Phi_tot)/Phi_tot)*Phi_u*grad(Phi_tot)- \n",
" (1-Phi_tot)*grad(Phi_u), grad(v)))*dx\n",
" t = 0\n",
" cFile = XDMFFile('4_neighbors_'+str(j)+'.xdmf')\n",
" cFile.write(Phi_u0, t)\n",
" \n",
" cs.append([])\n",
" ti = time.time()\n",
" for i in range(100):\n",
" cs[j].append([Phi_u([x, 4, 0.5]) for x in np.linspace(4, 4.49, 100)])\n",
" solve(Form == 0, Phi_u)\n",
" assign(Phi_u0, Phi_u)\n",
" t += dt\n",
" cFile.write(Phi_u0, t)\n",
" print(time.time() - ti)\n",

Lars Hubatsch
committed
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"font = {'family' : 'normal',\n",
" 'weight' : 'normal',\n",
" 'size' : 12}\n",
"import matplotlib\n",
"matplotlib.rc('font', **font)\n",
"\n",
"def make_graph_pretty(xlab, ylab, loc=0, markerfirst=True, handlelength=None):\n",
" color1 = 'black'#'darkorange'\n",
" color2 = (0, 0, 0)\n",
" color2 = (1, 1, 1)\n",
" ax = plt.gca()\n",
" ax.tick_params(axis='x', colors=color1, which='both')\n",
" ax.tick_params(axis='y', colors=color1, which='both')\n",
" plt.xlabel(xlab, color=color1)\n",
" plt.ylabel(ylab, color=color1)\n",
" ax.spines['left'].set_color(color1)\n",
" ax.spines['bottom'].set_color(color1)\n",
" # Hide the right and top spines\n",
" ax.spines['right'].set_visible(False)\n",
" ax.spines['top'].set_visible(False)\n",
" ax.set_facecolor(color2)\n",
" plt.gcf().subplots_adjust(bottom=0.17, left=0.15)\n",
" plt.legend(frameon=False, loc=loc, labelspacing=0.1,\n",
" markerfirst=markerfirst, handlelength=handlelength)\n",
"\n",
"for i in range(len(cs[0])):\n",
" plt.plot([np.mean(x[1:49])/0.8 for x in cs[0][0:i]], label='dist=0.5')\n",
" plt.plot([np.mean(x[1:49])/0.8 for x in cs[1][0:i]], label='dist=1')\n",
" plt.plot([np.mean(x[1:49])/0.8 for x in cs[2][0:i]], label='dist=1.5')\n",
" plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n",
" plt.ylim((0, 1.1))\n",
" plt.xlim((0, 100))\n",
" make_graph_pretty('t (a.u.)', 'intensity (a.u)', loc=4)\n",
" plt.savefig('img_'+str(i)+'.png', dpi=300)\n",
" plt.show()"

Lars Hubatsch
committed
]
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}