Skip to content
Snippets Groups Projects
Plots_Droplet_FRAP.ipynb 43.3 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fem_sol import frap_solver\n",
    "from matplotlib import cm, rc, rcParams\n",
    "from matplotlib.ticker import MaxNLocator\n",
    "import fem_utils\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import seaborn as sns\n",
    "from scipy.interpolate import interp1d\n",
    "fol = '/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/'\n",
    "rcParams['axes.linewidth'] = 0.75\n",
    "rcParams['xtick.major.width'] = 0.75\n",
    "rcParams['ytick.major.width'] = 0.75\n",
    "# rcParams['text.usetex']=True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define colors\n",
    "pa = sns.color_palette(\"Set2\")\n",
    "sns.set_palette(pa)\n",
    "grey = (0.6, 0.6, 0.6)\n",
    "dark_grey = (0.2, 0.2, 0.2)\n",
    "green = pa[0]\n",
    "blue = pa[2]\n",
    "red = pa[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pylab as pl\n",
    "params = {'legend.fontsize': 9,\n",
    "          'legend.handlelength': 1}\n",
    "pl.rcParams.update(params)\n",
    "\n",
    "def nice_fig(xla, yla, xli, yli, size, fs=12): \n",
    "    rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})\n",
    "#     rc('font',**{'family':'serif','serif':['Palatino']})\n",
    "    plt.gcf().set_size_inches(size[0], size[1])\n",
    "    plt.xlabel(xla,fontsize=fs)  \n",
    "    plt.ylabel(yla,fontsize=fs)\n",
    "    plt.xlim(xli)\n",
    "    plt.ylim(yli)\n",
    "    plt.tick_params(axis='both', which='major', labelsize=fs)\n",
    "\n",
    "def save_nice_fig(name, form='pdf'):\n",
    "    plt.savefig(name, format=form, dpi=300, bbox_inches='tight',\n",
    "                transparent=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### FRAP geometries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# For radial average: define angles and radial spacing\n",
    "alphas = np.linspace(0,2*np.pi, 20)\n",
    "ns = np.c_[np.cos(alphas), np.sin(alphas), np.zeros(len(alphas))]\n",
    "eps = np.linspace(0, 0.23, 100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "me = ['Meshes/multi_drop_gauss.xml', 'Meshes/multi_drop_gauss_med.xml',\n",
    "     'Meshes/multi_drop_gauss_far.xml', 'Meshes/multi_drop_gauss.xml',\n",
    "     'Meshes/multi_drop_gauss_med.xml', 'Meshes/multi_drop_gauss_far.xml']\n",
    "point_lists = [[[4, 4.5, 0.5], [4, 3.5, 0.5], [3.5, 4, 0.5], [4.5, 4, 0.5]],\n",
    "               [[4, 5, 0.5], [4, 3, 0.5], [3, 4, 0.5], [5, 4, 0.5]],\n",
    "               [[4, 5.5, 0.5], [4, 2.5, 0.5], [2.5, 4, 0.5], [5.5, 4, 0.5]],\n",
    "               [[4, 4.5, 0.5], [4, 3.5, 0.5], [3.5, 4, 0.5], [4.5, 4, 0.5]],\n",
    "               [[4, 5, 0.5], [4, 3, 0.5], [3, 4, 0.5], [5, 4, 0.5]],\n",
    "               [[4, 5.5, 0.5], [4, 2.5, 0.5], [2.5, 4, 0.5], [5.5, 4, 0.5]]]\n",
    "phi_tot_int = [.99, .99, .99, .9, .9, .9]\n",
    "phi_tot_ext = [.01, .01, .01, .1, .1, .1]\n",
    "G_in = [1, 1, 1, .1, .1, .1]\n",
    "G_out = [1, 1, 1, 0.99/0.9, 0.99/0.9, 0.99/0.9]\n",
    "\n",
Lars Hubatsch's avatar
Lars Hubatsch committed
    "f_i = []\n",
    "\n",
    "for p, m, p_i, p_e, G_i, G_o in zip(point_lists, me, phi_tot_int,\n",
    "                                    phi_tot_ext, G_in, G_out):\n",
    "    f = frap_solver([4, 4, 0.5], m, name='FRAP_multi_'+m[:-4]+str(G_i), point_list=p,\n",
    "                    T=50, phi_tot_int=p_i, phi_tot_ext=p_e, G_in=G_i, G_out=G_o)\n",
    "    f.solve_frap()\n",
    "    f_i.append(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "profs = []\n",
    "for i in range(len(f_i)):\n",
    "#     if i>2:\n",
    "        profs.append([])\n",
    "        for j in range(50):\n",
    "            values=[]\n",
    "            fs = fem_utils.load_time_point(f_i[i].name+'t_p_'+str(j)+'.h5',\n",
    "                                           f_i[i].mesh)\n",
    "            for n in ns:\n",
    "                values.append([fs([4, 4, 0.5]+e*n) for e in eps])\n",
    "            profs[i].append(np.mean(np.transpose(values), 1))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "np.savetxt('t_p.csv', profs, delimiter=',')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ft = f_i[1]\n",
    "meta_data = np.r_[ft.dt, ft.T, eps]\n",
    "np.savetxt('meta_data.csv', meta_data, delimiter=',')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.plot(eps,np.transpose(profs)[:,:])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nice_fig('time $t$ [s]', 'intensity (a.u)', [0,50], [0,1.1], [1.5,2])\n",
    "plt.plot([np.mean(x)/f_i[0].phi_tot_int for x in profs[0]],\n",
    "         lw=2, label='d=0.5', ls='-')\n",
    "plt.plot([np.mean(x)/f_i[1].phi_tot_int for x in profs[1]],\n",
    "         lw=2, label='d=1', ls='--')\n",
    "plt.plot([np.mean(x)/f_i[2].phi_tot_int for x in profs[2]],\n",
    "         lw=2, label='d=1.5', ls=':')\n",
    "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n",
    "plt.gca().get_yaxis().set_visible(False)\n",
    "save_nice_fig(fol+'Fig3/tot_recov_neighbours_bad.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nice_fig('time $t$ [s]', r'av. volume fraction $\\bar{\\phi}_\\mathrm{u}$', [0,30], [0,1.1], [1.5,2])\n",
    "plt.plot([np.mean(x)/f_i[3].phi_tot_int for x in profs[3]],\n",
    "         lw=2, label='$d=0.5 \\,\\mathrm{\\mu m}$', ls='-')\n",
    "plt.plot([np.mean(x)/f_i[4].phi_tot_int for x in profs[4]],\n",
    "         lw=2, label='$d=1 \\,\\mathrm{\\mu m}$', ls='--')\n",
    "plt.plot([np.mean(x)/f_i[5].phi_tot_int for x in profs[5]],\n",
    "         lw=2, label='$d=1.5 \\,\\mathrm{\\mu m}$', ls=':')\n",
    "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n",
    "plt.title('$P=9$', size=12)\n",
    "plt.legend(prop={'size': 9}, frameon=False, loc=(0.22, 0.025),\n",
    "           handletextpad=0.4, labelspacing=0.2)\n",
    "save_nice_fig(fol+'Fig3/tot_recov_neighbours_good.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ml = np.loadtxt('/Users/hubatsch/Desktop/DropletFRAP/matlab_fit.csv',\n",
    "                      delimiter=',')\n",
    "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'volume fraction $\\phi_\\mathrm{u}$', [0,0.25], [0,1.1], [3.8,2])\n",
    "l_sim = plt.plot(eps, np.transpose(profs[0])[:,::8]/f_i[0].phi_tot_int, c=green,\n",
    "                 lw=4.5, alpha=0.7)\n",
    "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n",
    "l_fit = plt.plot(np.linspace(0, 0.23, 100), np.transpose(ml)[:,::8], c='k', lw=1.5)\n",
    "plt.legend([l_sim[0], l_fit[0]], ['Model, eq. (6)', 'Fit, eq. (1)'], prop={'size': 9}, frameon=False)\n",
    "save_nice_fig(fol+'Fig3/spat_recov_neighbours.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define parameters for all simulations\n",
    "point_list = [[4, 4, 0.5], [4, 4, 1.5], [4, 4, 4],\n",
    "              [4, 4, 0.5], [4, 4, 1.5], [4, 4, 4]]\n",
    "me = ['coverslip.xml', '1_5.xml', 'symmetric.xml',\n",
    "      'coverslip.xml', '1_5.xml', 'symmetric.xml']\n",
    "phi_tot_int = [.99, .99, .99, .9, .9, .9]\n",
    "phi_tot_ext = [.01, .01, .01, .1, .1, .1]\n",
    "G_in = [1, 1, 1, .1, .1, .1]\n",
    "G_out = [1, 1, 1, 0.99/0.9, 0.99/0.9, 0.99/0.9]\n",
    "f_cs = []\n",
    "\n",
    "# Zip all parameters, iterate\n",
    "for p, m, p_i, p_e, G_i, G_o in zip(point_list, me, phi_tot_int,\n",
Lars Hubatsch's avatar
Lars Hubatsch committed
    "                                    phi_tot_ext, G_in, G_out):\n",
    "    f_cs.append(frap_solver(p, 'Meshes/single_drop_'+m,\n",
    "                name='FRAP_'+m[:-4]+str(G_i), T=60, phi_tot_int=p_i,\n",
    "                phi_tot_ext=p_e, G_in=G_i, G_out=G_o))\n",
    "    f_cs[-1].solve_frap()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "z = [0.5, 1.5, 4, 0.5, 1.5, 4]\n",
    "profs_cs = []\n",
    "for i, z_i in enumerate(z):\n",
    "    profs_cs.append([])\n",
    "    for j in range(50):\n",
    "        values=[]\n",
    "        fs = fem_utils.load_time_point(f_cs[i].name+'t_p_'+str(j)+'.h5',\n",
    "                                       f_cs[i].mesh)\n",
    "        for n in ns:\n",
    "            values.append([fs([4, 4, z_i]+e*n) for e in eps])\n",
    "        profs_cs[i].append(np.mean(np.transpose(values), 1))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nice_fig('time $t$ [s]', '', [0,50], [0,1.1], [1.5,2])\n",
    "ls = ['-', '--', '-.']\n",
    "for i, f in enumerate(f_cs[0:3]):\n",
    "    plt.plot([np.mean(x)/f.phi_tot_int for x in profs_cs[i]],\n",
    "             label='d='+str(z[i]), ls=ls[i], lw=2)\n",
    "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n",
    "plt.gca().get_yaxis().set_visible(False)\n",
    "save_nice_fig(fol+'Fig3/tot_recov_cs_bad.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nice_fig('time $t$ [s]', r'av. volume fraction $\\bar{\\phi}_\\mathrm{u}$', [0,30], [0,1.1], [1.5,2])\n",
    "ls = ['-', '--', '-.']\n",
    "for i, f in enumerate(f_cs[3:]):\n",
    "    plt.plot([np.mean(x)/f.phi_tot_int for x in profs_cs[i+3]],\n",
    "             label='$h=$'+str(z[i])+'$\\,\\mathrm{\\mu m}$', lw=2, ls=ls[i])\n",
    "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n",
    "plt.legend(prop={'size': 9}, frameon=False, loc=(0.22, 0.025),\n",
    "           handletextpad=0.4, labelspacing=0.2)\n",
    "save_nice_fig(fol+'Fig3/tot_recov_cs_good.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ml_neigh = np.loadtxt('/Users/hubatsch/Desktop/DropletFRAP/matlab_fit_neigh.csv',\n",
    "                      delimiter=',')\n",
    "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'volume fraction $\\phi_\\mathrm{u}$', [0,0.25], [0,1.1], [3.8,2])\n",
    "l_sim = plt.plot(eps, np.transpose(profs_cs[0])[:,::8]/f_cs[0].phi_tot_int, c=green,\n",
    "                 lw=4.5, alpha=0.7)\n",
    "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n",
    "l_fit = plt.plot(np.linspace(0, 0.23, 100), np.transpose(ml_neigh)[:,::8],\n",
    "         ls='-', c='k', lw=1)\n",
    "plt.legend([l_sim[0], l_fit[0]], ['Model, eq. (6)', 'Fit, eq. (1)'], frameon=False, loc=(0.63, 0.0))\n",
    "save_nice_fig(fol+'Fig3/spat_recov_coverslip.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Figure 1: Fitting $D_{in}$ and data analysis."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel: comparison PGL-3 diffusivity with Louise's viscosity**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "louise = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Louise.csv')\n",
    "lars = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Lars.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Calculate rough molecular radius, based on Stokes-Einstein and Louise's\n",
    "# viscosity data from the Science paper supplement (Fig. S5G), email from Louise:\n",
    "# earliest point is 10.4 Pa*s .\n",
    "# Einstein kinetic theory: D=kB*T/(6*pi*eta*r)\n",
    "D = lars.D[lars.conc==75].mean()\n",
    "eta = 10.4\n",
    "kBT = 4.11*10**-21\n",
    "r = kBT/(D*6*np.pi*eta)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig, ax1 = plt.subplots()\n",
    "ax2 = ax1.twinx()\n",
    "plt.sca(ax1)\n",
    "sns.lineplot(x=\"conc\", y=\"D\", data=lars, color=sns.color_palette()[1])\n",
    "sns.scatterplot(x=\"conc\", y=\"D\", data=lars, color=sns.color_palette()[1], alpha=0.8)\n",
    "plt.xlabel('$c_\\mathrm{salt}\\; [\\mathrm{mM}]$')\n",
    "plt.ylabel('$D_{\\mathrm{in}} \\;[\\mathrm{\\mu m^2\\cdot s^{-1}}]$', color=red)\n",
    "plt.yticks([0, 0.05, 0.1], rotation=90, color = pa[1])\n",
    "plt.ylim(0, 0.1)\n",
    "ax1.set_zorder(1) \n",
    "ax1.patch.set_visible(False)\n",
    "plt.sca(ax2)\n",
    "sns.lineplot(x=\"conc\", y=\"vis\", data=louise, color=grey, label='data from Jawerth \\net al. 2018')\n",
    "nice_fig('c_\\mathrm{salt} [\\mathrm{mM}]', '$\\eta^{-1} \\;[Pa\\cdot s]^{-1}$', [40,190], [0,7.24], [2.3,2])\n",
    "plt.yticks(color = grey)\n",
    "plt.ylabel('$\\eta^{-1} \\;[\\mathrm{Pa\\cdot s}]^{-1}$ ', color = grey)\n",
    "plt.legend(frameon=False, fontsize=9)\n",
    "save_nice_fig(fol+'Fig1/Lars_vs_Louise.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Ratio between $D_{out}$ for maximum and minimum salt concentrations for PGL-3**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "lars[lars.conc==180].mean()/lars[lars.conc==50].mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel:coacervates PLYS/ATP, CMD/PLYS**m"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "coacervates = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Coacervates.csv')\n",
    "sns.stripplot(data=coacervates, palette=[green, blue], jitter=0.35,**{'marker': '.', 'size': 10})\n",
    "ax = sns.barplot(data=coacervates, palette=pa, facecolor=(1, 1, 1, 0), edgecolor=[pa[0], pa[2]], capsize=.15, ci='sd', errwidth=1.5)\n",
    "plt.setp(ax.lines, zorder=100)\n",
    "nice_fig(None, '$D_\\mathrm{in} \\;[\\mathrm{\\mu m^2\\cdot s^{-1}}]$', [None, None], [0,7], [2.3,2])\n",
    "plt.xticks([0,1], ('CMD/PLYS', 'PLYS/ATP'), rotation=20)\n",
    "ax.get_xticklabels()[0].set_color(green)\n",
    "ax.get_xticklabels()[1].set_color(blue)\n",
    "plt.xlim(-0.7, 1.7)\n",
    "# save_nice_fig(fol+'Fig1/Coacervates.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel: time course CMD**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "CMD = np.loadtxt(fol+'/Fig1/CMD_timecourse.csv', delimiter=',')\n",
    "CMD_fit = np.loadtxt(fol+'/Fig1/CMD_fit_timecourse.csv', delimiter=',')\n",
    "l_sim = plt.plot(CMD[:, 0], CMD[:, 1::2], '.', c=green)\n",
    "l_fit = plt.plot(CMD_fit[:, 0], CMD_fit[:, 1::2], '-', lw=1, c='k')\n",
    "plt.plot(range(0, 10), np.ones(10)*np.min(CMD_fit[:, 1]), linestyle='--', color=grey, lw=1.5)\n",
    "plt.legend([l_sim[0], l_fit[0]], ['data', 'fit'], ncol=2, loc=(0, 0.85), frameon=False)\n",
    "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity (a.u)', [0,np.max(CMD_fit[:, 0])], [0,0.65], [2.3,2])\n",
    "save_nice_fig(fol+'Fig1/CMD_spat_recov.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel: time course PGL-3**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "PGL = np.loadtxt(fol+'/Fig1/PGL_timecourse.csv', delimiter=',')\n",
    "PGL_fit = np.loadtxt(fol+'/Fig1/PGL_fit_timecourse.csv', delimiter=',')\n",
    "l_sim = plt.plot(PGL[:, 0], PGL[:, 1::2], '.', c=red)\n",
    "l_fit = plt.plot(PGL_fit[:, 0], PGL_fit[:, 1::2], '-', lw=1, c='k')\n",
    "plt.plot(range(0, 10), np.ones(10)*np.min(PGL_fit[:, 1]), linestyle='--', color=grey, lw=1.5)\n",
    "plt.legend([l_sim[0], l_fit[0]], ['data', 'fit'], ncol=2, loc=(0.015, 0.865), frameon=False)\n",
    "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity (a.u)', [0,np.max(PGL_fit[:, 0])], [0, 0.7], [2.3,2])\n",
    "save_nice_fig(fol+'Fig1/PGL_spat_recov.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l_sim = plt.plot(PGL[:, 0], PGL[:, 1], '-', c=red)\n",
    "nice_fig('', '', [0,np.max(PGL_fit[:, 0])], [0, 0.55], [0.7,0.7], fs=5)\n",
    "plt.yticks([0, 0.5], ['', ''])\n",
    "plt.xticks([0, 3], ['', ''])\n",
    "plt.gca().tick_params(direction='in', length=3, width=1)\n",
    "save_nice_fig(fol+'Fig1/PGL_spat_90.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l_sim = plt.plot(PGL[:, 0], PGL[:, 4], '-', c=red)\n",
    "nice_fig('', '', [0,np.max(PGL_fit[:, 0])], [0, 0.55], [0.7,0.7], fs=5)\n",
    "plt.yticks([0, 0.5], ['', ''])\n",
    "plt.xticks([0, 3], ['', ''])\n",
    "plt.gca().tick_params(direction='in', length=3, width=1)\n",
    "save_nice_fig(fol+'Fig1/PGL_spat_300.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l_sim = plt.plot(PGL[:, 0], PGL[:, 7], '-', c=red)\n",
    "nice_fig('', '', [0,np.max(PGL_fit[:, 0])], [0, 0.55], [0.7,0.7], fs=5)\n",
    "plt.yticks([0, 0.5], ['', ''])\n",
    "plt.xticks([0, 3], ['', ''])\n",
    "plt.gca().tick_params(direction='in', length=3, width=1)\n",
    "save_nice_fig(fol+'Fig1/PGL_spat_510.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel: time course total intensity**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "PGL = np.loadtxt(fol+'/Fig1/PGL_bc.csv', delimiter=',')\n",
    "ATP = np.loadtxt(fol+'/Fig1/ATP_bc.csv', delimiter=',')\n",
    "CMD = np.loadtxt(fol+'/Fig1/CMD_bc.csv', delimiter=',')\n",
    "# fig, ax1 = plt.subplots()\n",
    "# ax2 = ax1.twiny()\n",
    "# plt.sca(ax1)\n",
    "nice_fig('$t/T_\\mathrm{max}$', 'intensity (a.u)', [0,200], [0,0.62], [2.3,2])\n",
    "# plt.sca(ax2)\n",
    "# ax2.tick_params(axis=\"x\",direction=\"in\")\n",
    "plt.plot(PGL[::10, 0]/np.max(PGL[1:-1:2, 0]), PGL[::10,1], '.', label='PGL-3', c='#CC406E', markersize=3, alpha=0.7, lw=2)\n",
    "plt.plot(ATP[::1, 0]/np.max(ATP[:, 0]), ATP[::1,1], '.', label='PLYS/ATP', c='#FF508A', markersize=3, alpha=0.7, lw=2)\n",
    "plt.plot(CMD[::5, 0]/np.max(CMD[:, 0]), CMD[::5,1], '.', label='CMD/PLYS', c='#7F2845', markersize=3, alpha=0.7, lw=2)\n",
    "plt.legend(frameon=False, fontsize=9)\n",
    "plt.xlim(0, 1)\n",
    "# save_nice_fig(fol+'Fig1/tot_recov.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "PGL = []\n",
    "for i in range(8):\n",
    "    PGL.append(np.loadtxt(fol+'/Fig1/PGL_bc'+str(i+1)+'.csv', delimiter=','))\n",
    "conc = np.loadtxt(fol+'/Fig1/PGL_conc.csv', delimiter=',')\n",
    "rads = [25,    24,    29,    26,    25,    53,    33,    26]\n",
    "# PGL = [PGL[i] for i in [0, 1, 2, 3, 4, 5, 7]]\n",
    "# rads = "
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nice_fig('time $t$ [s]', 'intensity (a.u)', [0,140], [0,0.82], [1,2])\n",
    "temp = sns.color_palette()\n",
    "sns.set_palette(sns.color_palette(\"rocket\", 9))\n",
    "# plt.sca(ax2)\n",
    "# ax2.tick_params(axis=\"x\",direction=\"in\")\n",
    "# plt.plot(PGL[::10, 0], PGL[::10,1], '.', label='PGL-3', c='#CC406E', markersize=3, alpha=0.7, lw=2)\n",
    "for jj, i in enumerate(PGL):\n",
    "    if jj != 10:\n",
    "        plt.plot(i[::, 0]/(0.136*rads[jj])**2, i[::,1], '-', color=sns.color_palette()[jj], lw=1.5)\n",
    "plt.legend([str(x)[:-2] for x in conc], columnspacing=0.2, frameon=False,\n",
    "           fontsize=7, handletextpad=0.4, handlelength=0.5, labelspacing=0.1,\n",
    "           loc=(0.3, 0), ncol=2) \n",
    "# plt.xticks([0, 500])\n",
    "save_nice_fig(fol+'Fig1/tot_recov_PGL.pdf')\n",
    "sns.set_palette(temp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nice_fig('time $t$ [s]', 'intensity (a.u)', [0,10], [0,0.72], [1,2])\n",
    "plt.plot(ATP[::1, 0], ATP[::1,1], '-', label='PLYS/ATP', c=blue, markersize=3, alpha=0.7, lw=1.5)\n",
    "plt.plot(CMD[::5, 0], CMD[::5,1], '-', label='CMD/PLYS', c=green, markersize=3, alpha=0.7, lw=1.5)\n",
    "plt.legend(frameon=False, fontsize=7, loc=(0.1, 0), handletextpad=0.5)\n",
    "plt.yticks([]); plt.ylabel('')\n",
    "save_nice_fig(fol+'Fig1/tot_recov_coac.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Figure 2: model sketches"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = np.loadtxt(fol+'Fig2/model_timecourse.csv', delimiter=',')\n",
    "l_fit = plt.plot(model[:, 0], model[:, 1:], '-', lw=1,\n",
    "                 c=green, label='Simulation')\n",
    "nice_fig('radial distance $r/R$', 'volume fraction $\\phi_\\mathrm{u}$', [0, 2],\n",
    "         [0,1], [2.3,2])\n",
    "plt.plot(model[:, 0], model[:, -1], c=green, lw=2)\n",
    "plt.plot(model[:, 0], model[:, -1], 'k', lw=2)\n",
    "# plt.annotate('$t \\longrightarrow \\infty$', (0.97, 0.89), (1.3,0.85), fontsize=12)\n",
    "# plt.annotate('$t \\longrightarrow \\infty$', (0.97, 0.89), (1.3,0.85), fontsize=12)\n",
    "plt.annotate('$\\phi_\\mathrm{tot}$', (1, 0.5), (1.5,0.5), fontsize=10)\n",
    "save_nice_fig(fol+'Fig2/full_time_course.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l_fit = plt.plot(model[:, 0], model[:, 2], '-', lw=1,\n",
    "                 c=dark_grey, label='Simulation')\n",
    "plt.plot(model[:, 0], model[:, -1], 'k', lw=2)\n",
    "nice_fig('radial distance $r/R$', 'volume fraction $\\phi_\\mathrm{u}$', [0, 2],\n",
    "         [0,1], [2.3,2])\n",
    "plt.title('$t=0.22 \\;R^2/D_\\mathrm{in}$')\n",
    "plt.text(0.75, 0.18, '$\\phi_\\mathrm{u}$', fontsize=10)\n",
    "plt.gca().fill_between(model[:, 0], 0, model[:, 2], color=green)\n",
    "plt.gca().fill_between(model[:, 0], model[:, -1], model[:, 2], color=grey)\n",
    "plt.annotate('$\\phi_\\mathrm{tot}$', (1, 0.5), (1.5,0.5), fontsize=10)\n",
    "save_nice_fig(fol+'Fig2/snap_shot.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l_fit = plt.plot(model[:, 0], model[:, 1], '-', lw=1,\n",
    "                 c=dark_grey, label='Simulation')\n",
    "plt.plot(model[:, 0], model[:, -1], 'k', lw=2)\n",
    "nice_fig('radial distance $r/R$', 'volume fraction $\\phi_\\mathrm{u}$', [0, 2],\n",
    "         [0,1], [2.3,2])\n",
    "plt.title('$t=0.22 \\;R^2/D_\\mathrm{in}$')\n",
    "plt.text(1.45, 0.02, '$\\phi_\\mathrm{u}$', fontsize=10)\n",
    "plt.gca().fill_between(model[:, 0], 0, model[:, -1], color=green)\n",
    "plt.gca().fill_between(model[:, 0], model[:, -1], model[:, 1], color=grey)\n",
    "plt.annotate('$\\phi_\\mathrm{tot}$', (1, 0.5), (1.5,0.5), fontsize=10)\n",
    "save_nice_fig(fol+'Fig2/snap_shot_bleach.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l_fit = plt.plot(model[:, 0], model[:, -2], '-', lw=1,\n",
    "                 c=dark_grey, label='Simulation')\n",
    "plt.plot(model[:, 0], model[:, -1], 'k', lw=2)\n",
    "nice_fig('radial distance $r/R$', 'volume fraction $\\phi_\\mathrm{u}$', [0, 2],\n",
    "         [0,1], [2.3,2])\n",
    "plt.title('$t=0.22 \\;R^2/D_\\mathrm{in}$')\n",
    "plt.text(0.47, 0.4, '$\\phi_\\mathrm{u}$', fontsize=10)\n",
    "plt.gca().fill_between(model[:, 0], 0, model[:, -2], color=green)\n",
    "plt.gca().fill_between(model[:, 0], model[:, -2], model[:, -1], color=grey)\n",
    "plt.annotate('$\\phi_\\mathrm{tot}$', (1, 0.5), (1.5,0.5), fontsize=10)\n",
    "save_nice_fig(fol+'Fig2/snap_shot_late.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# l_fit = plt.plot(model[:, 0], model[:, -2], '-', lw=1,\n",
    "#                  c=dark_grey, label='Simulation')\n",
    "plt.plot(model[:, 0], model[:, -1], 'k', lw=2)\n",
    "nice_fig('radial distance $r/R$', 'volume fraction $\\phi_\\mathrm{u}$', [0, 2],\n",
    "         [0,1], [2.3,2])\n",
    "plt.title('$t=0.22 \\;R^2/D_\\mathrm{in}$')\n",
    "plt.text(0.47, 0.4, '$\\phi_\\mathrm{u}$', fontsize=10)\n",
    "plt.gca().fill_between(model[:, 0], 0, model[:, -1], color=green)\n",
    "plt.annotate('$\\phi_\\mathrm{tot}$', (1, 0.5), (1.5,0.5), fontsize=10)\n",
    "save_nice_fig(fol+'Fig2/snap_shot_before.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Figure 4: Obtaining info about outside: experiments."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel: data time course with full model.**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "CMD = np.loadtxt(fol+'Fig4/CMD_timecourse.csv', delimiter=',')\n",
    "CMD_fit = np.loadtxt(fol+'Fig4/CMD_fit_timecourse.csv', delimiter=',')\n",
    "l_data = plt.plot(CMD[:, 0], CMD[:, 1:], c=green, lw=2,\n",
    "                  label='Experiment')\n",
    "l_fit = plt.plot(CMD_fit[:, 0], CMD_fit[:, 1:], '-', lw=1,\n",
    "                 c=dark_grey, label='Simulation')\n",
    "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity [a.u]',\n",
    "         [0, 2.4*np.max(CMD[:, 0])], [0,0.5], [2.3,2])\n",
    "plt.legend([l_data[0], l_fit[0]], ['CMD/PLYS', 'Full model'], frameon=False,\n",
    "           fontsize=9, handletextpad=0.4, handlelength=0.8, loc=(0.52, 0.7))\n",
    "save_nice_fig(fol+'Fig4/CMD_spat_recov_new.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "PLYS = np.loadtxt(fol+'Fig4/PLYS_timecourse.csv', delimiter=',')\n",
    "PLYS_fit = np.loadtxt(fol+'Fig4/PLYS_fit_timecourse.csv', delimiter=',')\n",
    "PLYS_t = np.loadtxt(fol+'Fig4/PLYS_fit_time.csv', delimiter=',')\n",
    "l_data = plt.plot(PLYS[:, 0], PLYS[:, 1::30], c=blue, lw=2)\n",
    "l_fit = plt.plot(PLYS_fit[:, 0], PLYS_fit[:, 2::30], '-', lw=1,\n",
    "                 c=dark_grey, label='Simulation') # time course\n",
    "l_fit = plt.plot(PLYS_fit[:, 0], PLYS_fit[:, 1], '-', lw=1,\n",
    "                 c=dark_grey) # Initial condition\n",
    "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity [a.u]',\n",
    "         [0, 2.4*np.max(PLYS[:, 0])], [0,0.75], [2.3,2])\n",
    "plt.legend([l_data[0], l_fit[0]], ['ATP/PLYS', 'Full model'], frameon=False,\n",
    "           fontsize=9, handletextpad=0.4, handlelength=0.8, loc=(0.52, 0.7))\n",
    "# save_nice_fig(fol+'Fig4/PLYS_spat_recov_new.pdf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for i in range(np.shape(PLYS)[1]):\n",
    "    l_data = plt.plot(PLYS[:, 0], PLYS[:, 1+i], c=blue, lw=2)\n",
    "    l_fit = plt.plot(PLYS_fit[:, 0], PLYS_fit[:, 2+i], '-', lw=1,\n",
    "                     c=dark_grey, label='Simulation') # time course\n",
    "    nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity [a.u]',\n",
    "             [0, 2.4*np.max(PLYS[:, 0])], [0,0.9], [2.3,2.005])\n",
    "    plt.legend([l_data[0], l_fit[0]], ['ATP/PLYS', 'Full model'], frameon=False,\n",
    "               fontsize=9, handletextpad=0.4, handlelength=0.8, loc=(0.52, 0.7))\n",
    "    t = str(np.round(PLYS_t[i+1], 2))\n",
    "    plt.text(0.5, 0.785, t.ljust(4, '0') + ' s')\n",
    "    save_nice_fig(fol+'Fig4/PLYSATP_mov/PLYS_spat_recov_mov_'+str(i)+'.png', form='png')\n",
    "    plt.show();"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "PGL = np.loadtxt(fol+'Fig4/PGL_timecourse.csv', delimiter=',')\n",
    "PGL_fit = np.loadtxt(fol+'Fig4/PGL_fit_timecourse.csv', delimiter=',')\n",
    "l_data = plt.plot(PGL[:, 0], PGL[:, 1::4], c=red, lw=2,\n",
    "                  label='Experiment')\n",
    "l_fit = plt.plot(PGL_fit[:, 0], PGL_fit[:, 2::4], '-', lw=1,\n",
    "                 c=dark_grey, label='Simulation')\n",
    "plt.plot(PGL_fit[:, 0], PGL_fit[: 1], '-', lw=1, c=dark_grey)\n",
    "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity (a.u)',\n",
    "         [0, 2.5*np.max(PGL[:, 0])], [0,0.65], [2.3,2])\n",
    "plt.legend([l_data[0], l_fit[0]], ['PGL', 'Full model'],\n",
    "           frameon=False, fontsize=9, handletextpad=0.4,\n",
    "           handlelength=0.8, loc=(0.54, 0.7))\n",
    "save_nice_fig(fol+'Fig4/PGL_spat_recov.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel: Experimental Partition coefficient vs $D_{out}$ for CMD**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "PLYS = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PLYS.csv')\n",
    "CMD = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/CMD.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig, ax1 = plt.subplots()\n",
    "plt.sca(ax1)\n",
    "sns.lineplot(x=\"P\", y=\"D_out\", data=CMD, color=green, ci='sd')\n",
    "sns.lineplot(x=\"P\", y=\"D_out\", data=PLYS, color=blue, ci='sd')\n",
    "plt.plot(np.logspace(1, 3, 10), 1.5*np.logspace(1, 3, 10), '--', c='grey', alpha=0.5)\n",
    "# plt.plot(np.logspace(0, 2, 10), 0.2*np.logspace(0, 2, 10)**2, '--', c='grey')\n",
    "ax1.set_yscale('log')\n",
    "ax1.set_xscale('log')\n",
    "nice_fig('Partition coefficient $P$', '$D_\\mathrm{out} \\;[\\mathrm{\\mu m^2s^{-1}}]$',\n",
    "         [1,340], [0.08,450], [2.3,2])\n",
    "plt.legend(['CMD/PLYS', 'ATP/PLYS'], frameon=False, fontsize=9, loc=(0.44,0.05))\n",
    "plt.text(1.1, 2, '$D_\\mathrm{in, P/A}$', color=blue)\n",
    "plt.text(1.1, 7, '$D_\\mathrm{in, C/P}$', color=green)\n",
    "# plt.plot([1, 9], [1.7, 1.7], '--', color=blue)\n",
    "# plt.plot([1, 12], [6, 6], '--', color=green)\n",
    "plt.xticks([1, 10, 100]);\n",
    "plt.yticks([0.1, 1, 10, 100]);\n",
    "save_nice_fig(fol+'Fig4/PLYS_CMD.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel: Experimental Partition coefficient vs $D_out$ for PGL-3**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "PGL_50 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_50.csv')\n",
    "PGL_60 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_60.csv')\n",
    "PGL_75 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_75.csv')\n",
    "PGL_90 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_90.csv')\n",
    "PGL_100 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_100.csv')\n",
    "PGL_120 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_120.csv')\n",
    "PGL_150 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_150.csv')\n",
    "PGL_180 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_180.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig, ax1 = plt.subplots()\n",
    "plt.sca(ax1)\n",
    "temp = sns.color_palette()\n",
    "sns.set_palette(sns.color_palette(\"rocket\", 9))\n",
    "l50 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_50,\n",
    "                   color=sns.color_palette()[1], ci=None)\n",
    "l60 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_60,\n",
    "                   color=sns.color_palette()[2], ci=None)\n",
    "l75 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_75,\n",
    "                   color=sns.color_palette()[3], ci=None)\n",
    "l90 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_90,\n",
    "                   color=sns.color_palette()[4], ci=None)\n",
    "l100 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_100,\n",
    "                   color=sns.color_palette()[5], ci=None)\n",
    "leg1 = plt.legend(['50 mM', '60 mM', '75 mM', '90 mM', '100 mM'],\n",
    "                  labelspacing=0.3, loc=(0.63, 0.0),\n",
    "                  handletextpad=0.4, handlelength=0.5, frameon=0)\n",
    "\n",
    "l120 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_120,\n",
    "                    color=sns.color_palette()[6], ci=None)\n",
    "l150 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_150,\n",
    "                    color=sns.color_palette()[7], ci=None)\n",
    "l180 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_180,\n",
    "                    color=sns.color_palette()[8], ci=None)\n",
    "plt.plot(np.logspace(0, 4, 10), 0.07*np.logspace(0, 4, 10),\n",
    "         '--', c='grey', alpha=0.5)\n",
    "# plt.plot(np.logspace(2, 3, 10), 30*np.ones(10), '--', c='m', lw=2)\n",
    "ax1.set_yscale('log')\n",
    "ax1.set_xscale('log')\n",
    "nice_fig('Partition coefficient $P$',\n",
    "         '$D_\\mathrm{out} \\;[\\mathrm{\\mu m^2 s^{-1}}]$',\n",
    "         [1,10000], [0.0003,600], [2.3,2])\n",
    "plt.xticks([1, 10, 100, 1000, 10000]);\n",
    "plt.legend(loc=1)\n",
    "plt.legend(['50 mM', '60 mM', '75 mM', '90 mM', '100 mM',\n",
    "            '120 mM', '150 mM', '180 mM'], labelspacing=0.3,\n",
    "           loc=(0, 0.66), handletextpad=0.4, handlelength=0.5, frameon=0)\n",
    "plt.gca().add_artist(leg1)\n",
    "# plt.plot([700, 10000], [30, 30], color=(1, 0, 0))\n",
    "# plt.plot([700, 10000], [70, 70], color=(1, 0, 0))\n",
    "# plt.plot([700, 700], [30, 70], color=(1, 0, 0))\n",
    "# plt.plot([10000, 10000], [30, 70], color=(1, 0, 0))\n",
    "# save_nice_fig(fol+'Fig4/PGL-3.pdf')\n",
    "sns.set_palette(temp)"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "le_egfp = 239\n",
    "le_pgl3 = 693\n",
    "ratio = le_egfp/(le_egfp+le_pgl3)\n",
    "D_factor = np.sqrt(ratio)\n",
    "D_GFPw = 87 # micron^2/s, Arrio-Dupont et al. 2000 BJ, GFP in water\n",
    "D = D_GFPw*np.sqrt(ratio)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "P = PGL_50['P']\n",
    "def i_P(df, Pa):\n",
    "    return interp1d(np.array(df.groupby('P').mean()).flatten(),\n",
    "                    P.unique(), bounds_error=False,\n",
    "                    fill_value=\"extrapolate\")(Pa)\n",
    "Ps_15 = [i_P(PGL, 30) for PGL in [PGL_50, PGL_60, PGL_75, PGL_90,\n",
    "                           PGL_100, PGL_120, PGL_150, PGL_180]]\n",
    "Ps_30 = [i_P(PGL, 60) for PGL in [PGL_50, PGL_60, PGL_75, PGL_90,\n",
    "                           PGL_100, PGL_120, PGL_150, PGL_180]]\n",
    "salts = [50, 60, 75, 90, 100, 120, 150, 180]\n",
    "nice_fig('$c_\\mathrm{salt} \\; [\\mathrm{mM}]$', 'Partition coefficient $P$',\n",
    "         [50, 180], [0,20000], [2.3,2])\n",
    "plt.plot(salts, Ps_15, color=red)\n",
    "plt.plot(salts, Ps_30, color=red)\n",
    "plt.gca().fill_between(salts, Ps_15, Ps_30, color=red, alpha=0.2)\n",
    "plt.yticks(rotation=45)\n",
    "plt.text(110, 6200, '$D_\\mathrm{out}=30\\;\\mathrm{\\mu m^2/s}$',\n",
    "         color=red, size=8)\n",
    "plt.text(54, 700, '$D_\\mathrm{out}=15\\;\\mathrm{\\mu m^2/s}$',\n",
    "         color=red, size=8)\n",
    "# save_nice_fig(fol+'Fig4/PGL-3_part.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Figure 5: Obtaining info about outside: theory."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Panel: Partition coefficient vs. $D_{out}$, showcasing four different simulation start cases.**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "sns.set_palette(sns.color_palette(\"Set2\"))\n",
    "P_Do = np.loadtxt(fol+'/Fig4/Part_vs_Do_220121.csv', delimiter=',')\n",
    "sns.set_style(\"white\")\n",
    "sns.set_palette([sns.color_palette()[i] for i in [3, 0, 1, 2]])\n",
    "P = [5, 150, 5, 150]\n",
    "D_o = [0.1, 0.1, 1, 1]\n",
    "plt.gca().set_prop_cycle(None)\n",
    "nice_fig('Partition coefficient $P$', '$D_\\mathrm{out}$ [$\\mathrm{\\mu m^2/s}$]', [0.9,320], [0.000001,340], [2.3,2])\n",
    "lines = plt.loglog(P_Do[0, :], P_Do[1:, :].transpose())\n",
    "plt.plot(P_Do[0, :], P_Do[0, :], '--', c='grey')\n",
    "plt.legend([lines[2], lines[0], lines[3], lines[1]],\n",
    "           ['0.2', '0.02', '0.0067', '0.00067'], ncol=2, frameon=False,\n",
    "               title=r'$D_\\mathrm{out}$/P [$\\mathrm{\\mu m^2/s}$]:', columnspacing=0.5, labelspacing=0.3,\n",
    "           loc=(0.4, 0), handletextpad=0.4, handlelength=0.5)\n",
    "plt.gca().set_prop_cycle(None)\n",
    "plt.plot(P[0], D_o[0], 'd')\n",
    "plt.plot(P[1], D_o[1], 'd')\n",
    "plt.plot(P[2], D_o[2], 'd')\n",
    "plt.plot(P[3], D_o[3], 'd')\n",
    "plt.annotate('$D_{out}$/P = 1 $\\mathrm{\\mu m^2/s}$', [1,40], c='grey')\n",
    "plt.xticks([1, 10, 100]);\n",
    "save_nice_fig(fol+'Fig4/D_vs_P.pdf')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [