Skip to content
Snippets Groups Projects
Commit 2efcf4c0 authored by Lars Hubatsch's avatar Lars Hubatsch
Browse files

Radially symmetric diffusion works.

Take care of volume elements everywhere! Needs to be in all integrals (also t) and mass conservation check.
parent 3de621c6
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id: tags:
``` python
import dolfin as df
import matplotlib.pyplot as plt
import mshr as ms
import numpy as np
import time
df.set_log_level(40)
# domain = ms.Sphere(df.Point(0, 0, 0), 1.0)
# mesh = ms.generate_mesh(domain, 50)
mesh = df.UnitIntervalMesh(100000)
dt = 0.000001
F = df.FunctionSpace(mesh, 'CG', 1)
```
%% Cell type:code id: tags:
``` python
def calc_sim(c0, c_tot, Ga0):
tc = df.TestFunction(F)
c = df.Function(F)
# Weak form
form = ((df.inner((c-c0)/dt, tc) +
df.inner(df.grad(c), df.grad((1-c_tot)/Ga0*tc))) -
df.inner(df.grad(c_tot), df.grad((1-c_tot)/Ga0/c_tot*c*tc))-
tc*df.inner(df.grad(c), df.grad((1-c_tot)/Ga0))+
tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c/Ga0))) * df.dx
t = 0
# Solve in time
ti = time.time()
for i in range(6):
print(time.time() - ti)
df.solve(form == 0, c)
df.assign(c0, c)
t += dt
print(time.time() - ti)
return c0
```
%% Cell type:code id: tags:
``` python
# Interpolate c_tot and initial conditions
# 3D:
# c_tot.interpolate(df.Expression('0.4*tanh(-350*(sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))-0.2))+0.5', degree=1))
# c0.interpolate(df.Expression(('(x[0]<0.5) && sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))<0.2 ? 0 :'
# '0.4*tanh(-350*(sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))-0.2)) + 0.5'),
# degree=1))
# 1D, no partitioning
c0_1 = df.Function(F)
c_tot_1 = df.Function(F)
Ga0_1 = df.Function(F)
c_tot_1.interpolate(df.Expression('0*tanh(35000*(x[0]-0.01))+0.9', degree=1))
c0_1.interpolate(df.Expression(('x[0]<0.01 ? 0 :'
'0*tanh(35000*(x[0]-0.01))+0.9'),
degree=1))
Ga0_1.interpolate(df.Expression('4.*(tanh(35000*(x[0]-0.01))+1)+1', degree=1))
# 1D, high partitioning
c0_9 = df.Function(F)
c_tot_9 = df.Function(F)
Ga0_9 = df.Function(F)
c_tot_9.interpolate(df.Expression('0.4*tanh(-35000*(x[0]-0.01))+0.5', degree=1))
c0_9.interpolate(df.Expression(('x[0]<0.01 ? 0 :'
'0.4*tanh(-35000*(x[0]-0.01))+0.5'),
degree=1))
Ga0_9.interpolate(df.Expression('0*(tanh(-35000*(x[0]-0.01))+1)+1', degree=1))
c0_1 = calc_sim(c0_1, c_tot_1, Ga0_1)
c0_9 = calc_sim(c0_9, c_tot_9, Ga0_9)
```
%% Cell type:code id: tags:
``` python
# 1D:
plt.plot(np.linspace(0, 1, 10000), [c0_1([x]) for x in np.linspace(0, 1, 10000)])
plt.plot(np.linspace(0, 1, 10000), [c0_9([x]) for x in np.linspace(0, 1, 10000)])
plt.xlim(0, 0.1)
# plt.ylim(0, 0.3)
# 3D:
# plt.plot(np.linspace(0, 0.5, 1000), [c0([x, 0, 0]) for x in np.linspace(0, 0.5, 1000)])
```
%% Cell type:code id: tags:
``` python
# 1D:
plt.plot(np.linspace(0, 1, 10000), [c0([x]) for x in np.linspace(0, 1, 10000)])
# plt.xlim(0, 0.1)
# plt.ylim(0., 0.3)
```
%% Cell type:code id: tags:
``` python
plt.plot(np.linspace(0, 1, 2000), [Ga0_1([x]) for x in np.linspace(0, 1, 2000)])
plt.xlim(0, 0.1)
```
%% Cell type:code id: tags:
``` python
plt.plot(np.linspace(0, 1, 1000), [c_tot_9([x]) for x in np.linspace(0, 1, 1000)])
```
%% Cell type:markdown id: tags:
## Radial diffusion equation
%% Cell type:code id: tags:
``` python
import dolfin as df
mesh = df.UnitIntervalMesh(1000)
dt = 0.01
dt = 0.001
F = df.FunctionSpace(mesh, 'CG', 1)
c0 = df.Function(F)
c0.interpolate(df.Expression('x[0]<0.5 ? 0:1', degree=1))
c0.interpolate(df.Expression('x[0]<0.5 && x[0]>0.2 ? 1:0', degree=1))
q = df.TestFunction(F)
c = df.Function(F)
X = df.SpatialCoordinate(mesh)
g = df.Expression('.00', degree=1)
u_D = df.Expression('1', degree=1)
def boundary(x, on_boundary):
return on_boundary
bc = df.DirichletBC(F, u_D, boundary)
# Weak form spherical symmetry
form = (df.inner((c-c0)/dt, q) +
df.inner(df.grad(c), df.grad(4*3.1415*X[0]*X[0]*q))-
c.dx(0)*8*3.1415*X[0]*q) * df.dx
form = (df.inner((c-c0)/dt, q*X[0]*X[0]) +
df.inner(df.grad(c), df.grad(X[0]*X[0]*q))-
c.dx(0)*2*X[0]*q) * df.dx
# Weak form 1D
# form = (df.inner((c-c0)/dt, q) +
# df.inner(df.grad(c), df.grad(q))) * df.dx
t = 0
# Solve in time
for i in range(6):
for i in range(60):
print(np.sum([x*x*c0([x]) for x in np.linspace(0, 1, 1000)]))
df.solve(form == 0, c)
df.assign(c0, c)
t += dt
plt.plot(np.linspace(0, 1, 1000), [c0([x]) for x in np.linspace(0, 1, 1000)])
```
%% Cell type:code id: tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment