Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Frap Theory
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
hubatsch
Frap Theory
Commits
359f4464
Commit
359f4464
authored
4 years ago
by
Lars Hubatsch
Browse files
Options
Downloads
Patches
Plain Diff
Python: problem seems more outside than inside droplet.
parent
8a392fbb
Branches
flux_accuracy
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FloryHugg_DiffUnbleached.ipynb
+28
-24
28 additions, 24 deletions
FloryHugg_DiffUnbleached.ipynb
with
28 additions
and
24 deletions
FloryHugg_DiffUnbleached.ipynb
+
28
−
24
View file @
359f4464
...
...
@@ -93,37 +93,40 @@
"metadata": {},
"outputs": [],
"source": [
"bp = 0.1 # Boundary position at IC\n",
"sym = 2 # Symmetry of the problem\n",
"dt = 0.0001\n",
"\n",
"c_tot_1 = create_func(F, p_tot(0.9, 0.9), 1)\n",
"c0_1 = create_func(F, 'x[0]<
0.1
? 0 :' + p_tot(0.9, 0.9), 1)\n",
"c0_1 = create_func(F, 'x[0]<
'+str(bp)+'
? 0 :' + p_tot(0.9, 0.9), 1)\n",
"Ga0_1 = create_func(F, p_tot(1, 1/9), 1)\n",
"\n",
"c_tot_2 = create_func(F, p_tot(0.9, 0.45), 1)\n",
"c0_2 = create_func(F, 'x[0]<
0.1
? 0 :'+p_tot(0.9, 0.45), 1)\n",
"c0_2 = create_func(F, 'x[0]<
'+str(bp)+'
? 0 :'
+p_tot(0.9, 0.45), 1)\n",
"Ga0_2 = create_func(F,p_tot(1, 0.08), 1)\n",
"\n",
"c_tot_3 = create_func(F, p_tot(0.9, 0.3), 1)\n",
"c0_3 = create_func(F, 'x[0]<
0.1
? 0 :'+p_tot(0.9, 0.3), 1)\n",
"c0_3 = create_func(F, 'x[0]<
'+str(bp)+'
? 0 :'
+p_tot(0.9, 0.3), 1)\n",
"Ga0_3 = create_func(F,p_tot(1, 0.145), 1)\n",
"\n",
"c_tot_5 = create_func(F, p_tot(0.9, 0.18), 1)\n",
"c0_5 = create_func(F, 'x[0]<
0.1
? 0 :'+p_tot(0.9, 0.18), 1)\n",
"c0_5 = create_func(F, 'x[0]<
'+str(bp)+'
? 0 :'
+p_tot(0.9, 0.18), 1)\n",
"Ga0_5 = create_func(F,p_tot(1, 0.34), 1)\n",
"\n",
"c_tot_8 = create_func(F, p_tot(0.9, 0.1125), 1)\n",
"c0_8 = create_func(F, 'x[0]<
0.1
? 0 :'+p_tot(0.9, 0.1125), 1)\n",
"c0_8 = create_func(F, 'x[0]<
'+str(bp)+'
? 0 :'
+p_tot(0.9, 0.1125), 1)\n",
"Ga0_8 = create_func(F,p_tot(1, 0.8), 1)\n",
"\n",
"c_tot_9 = create_func(F, p_tot(0.9, 0.1), 1)\n",
"c0_9 = create_func(F, 'x[0]<
0.1
? 0 :'+p_tot(0.9, 0.1), 1)\n",
"c0_9 = create_func(F, 'x[0]<
'+str(bp)+'
? 0 :'
+p_tot(0.9, 0.1), 1)\n",
"Ga0_9 = create_func(F,p_tot(1, 1), 1)\n",
"\n",
"sym = 0\n",
"c0_1 = calc_sim(c0_1, c_tot_1, Ga0_1, 0.01, 10, sym)\n",
"c0_2 = calc_sim(c0_2, c_tot_2, Ga0_2, 0.01, 10, sym)\n",
"c0_3 = calc_sim(c0_3, c_tot_3, Ga0_3, 0.01, 10, sym)\n",
"c0_5 = calc_sim(c0_5, c_tot_5, Ga0_5, 0.01, 10, sym)\n",
"c0_8 = calc_sim(c0_8, c_tot_8, Ga0_8, 0.01, 10, sym)\n",
"c0_9 = calc_sim(c0_9, c_tot_9, Ga0_9, 0.01, 10, sym)"
"c0_1 = calc_sim(c0_1, c_tot_1, Ga0_1, dt, 10, sym)\n",
"c0_2 = calc_sim(c0_2, c_tot_2, Ga0_2, dt, 10, sym)\n",
"c0_3 = calc_sim(c0_3, c_tot_3, Ga0_3, dt, 10, sym)\n",
"c0_5 = calc_sim(c0_5, c_tot_5, Ga0_5, dt, 10, sym)\n",
"c0_8 = calc_sim(c0_8, c_tot_8, Ga0_8, dt, 10, sym)\n",
"c0_9 = calc_sim(c0_9, c_tot_9, Ga0_9, dt, 10, sym)"
]
},
{
...
...
@@ -160,16 +163,17 @@
"outputs": [],
"source": [
"# Plot outside, check invariance\n",
"x = np.linspace(
0.1
, 1, 1000)\n",
"x = np.linspace(
bp
, 1, 1000)\n",
"y1 = eval_func(c0_1, x)\n",
"y2 = eval_func(c0_2, x)\n",
"y3 = eval_func(c0_3, x)\n",
"y9 = eval_func(c0_9, x)\n",
"plt.plot((x-np.min(x)), y1)\n",
"plt.plot((x-np.min(x))/2, 2*y2)\n",
"plt.plot((x-np.min(x))/3, 3*y3)\n",
"plt.plot((x-np.min(x))/9, 9*y9)\n",
"# plt.xlim(0.0, 0.951252)\n",
"plt.plot((x-bp), y1)\n",
"plt.plot((x-bp)/2, 2*y2)\n",
"plt.plot((x-bp)/3, 3*y3)\n",
"plt.plot((x-bp)/9, 9*y9)\n",
"plt.xlim(0.0, 0.02)\n",
"plt.ylim(0.2, 1)\n",
"plt.show()"
]
},
...
...
@@ -185,11 +189,11 @@
"y2 = eval_func(c0_2, x)-np.min(eval_func(c0_2, x))\n",
"y3 = eval_func(c0_3, x)-np.min(eval_func(c0_3, x))\n",
"y9 = eval_func(c0_9, x)-np.min(eval_func(c0_9, x))\n",
"plt.plot((x-np.min(x)), y1)\n",
"plt.plot((x-np.min(x)), y2)\n",
"plt.plot((x-np.min(x)), y3)\n",
"plt.plot((x-np.min(x)), y9)\n",
"plt.xlim(0.0,
0.1251252
)\n",
"plt.plot((x-np.min(x)), y1
/eval_func(c0_1, [0.08])
)\n",
"plt.plot((x-np.min(x)), y2
/eval_func(c0_2, [0.08])
)\n",
"plt.plot((x-np.min(x)), y3
/eval_func(c0_3, [0.08])
)\n",
"plt.plot((x-np.min(x)), y9
/eval_func(c0_9, [0.08])
)\n",
"plt.xlim(0.0
8
,
bp
)\n",
"plt.show()"
]
},
...
...
%% Cell type:code id: tags:
```
python
import
dolfin
as
df
import
matplotlib.pyplot
as
plt
import
mshr
as
ms
import
numpy
as
np
import
time
df
.
set_log_level
(
40
)
# domain = ms.Sphere(df.Point(0, 0, 0), 1.0)
# mesh = ms.generate_mesh(domain, 50)
mesh
=
df
.
UnitIntervalMesh
(
10000
)
F
=
df
.
FunctionSpace
(
mesh
,
'
CG
'
,
1
)
```
%% Cell type:code id: tags:
```
python
def
calc_sim
(
c0
,
c_tot
,
Ga0
,
dt
,
n_t
,
sym
):
tc
=
df
.
TestFunction
(
F
)
c
=
df
.
Function
(
F
)
X
=
df
.
SpatialCoordinate
(
mesh
)
# X.interpolate(df.Expression('x[0]', degree=1))
if
sym
==
0
:
# Weak form 1D:
# form = (df.inner((c-c0)/dt, tc) +
# df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*tc)) -
# df.inner(df.grad(c_tot), df.grad((1-c_tot)*Ga0/c_tot*c*tc))-
# tc*df.inner(df.grad(c), df.grad((1-c_tot)*Ga0))+
# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c*Ga0))) * df.dx
# # Weak form 1D short:
form
=
((
c
-
c0
)
/
dt
*
tc
+
(
1
-
c_tot
)
*
Ga0
*
df
.
inner
((
df
.
grad
(
c
)
-
c
/
c_tot
*
df
.
grad
(
c_tot
)),
df
.
grad
(
tc
)))
*
df
.
dx
elif
sym
==
2
:
# Weak form radial symmetry:
# form = (df.inner((c-c0)/dt, tc*X[0]*X[0]) +
# df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*tc*X[0]*X[0])) -
# df.inner(df.grad(c_tot), df.grad((1-c_tot)*Ga0/c_tot*c*tc*X[0]*X[0]))-
# tc*df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*X[0]*X[0]))+
# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c*Ga0*X[0]*X[0]))-
# (1-c_tot)*Ga0*2*X[0]*c.dx(0)*tc+
# (1-c_tot)*Ga0/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx
# # Weak form radial symmetry:
# form = ((c-c0)/dt*tc*X[0]**2 +
# (1-c_tot)*Ga0*(c.dx(0)-c/c_tot*c_tot.dx(0))*
# tc.dx(0)*X[0]**2) * df.dx
form
=
((
c
-
c0
)
/
dt
*
tc
+
(
1
-
c_tot
)
*
Ga0
*
df
.
inner
((
df
.
grad
(
c
)
-
c
/
c_tot
*
df
.
grad
(
c_tot
)),
df
.
grad
(
tc
)))
*
X
[
0
]
*
X
[
0
]
*
df
.
dx
t
=
0
# Solve in time
ti
=
time
.
time
()
for
i
in
range
(
n_t
):
# print(np.sum([x*x*c0([x]) for x in np.linspace(0, 1, 1000)]))
df
.
solve
(
form
==
0
,
c
)
df
.
assign
(
c0
,
c
)
t
+=
dt
print
(
time
.
time
()
-
ti
)
return
c0
def
p_tot
(
p_i
,
p_o
):
return
str
(
p_i
-
p_o
)
+
'
*(-0.5*tanh(3500*(x[0]-0.1))+0.5)+
'
+
str
(
p_o
)
# return '(x[0]<0.1 ? '+str(p_i)+':'+ str(p_o)+')'
def
create_func
(
f_space
,
expr_str
,
deg
):
f
=
df
.
Function
(
f_space
)
f
.
interpolate
(
df
.
Expression
(
expr_str
,
degree
=
deg
))
return
f
def
eval_func
(
func
,
x
):
return
np
.
array
([
func
([
x
])
for
x
in
x
])
def
eval_P
(
func
,
x
):
return
func
(
x
[
0
])
/
func
(
x
[
1
])
def
eval_D
(
func_ga
,
func_tot
,
x
):
return
(
func_ga
(
x
)
*
(
1
-
func_tot
(
x
)))
```
%% Cell type:code id: tags:
```
python
bp
=
0.1
# Boundary position at IC
sym
=
2
# Symmetry of the problem
dt
=
0.0001
c_tot_1
=
create_func
(
F
,
p_tot
(
0.9
,
0.9
),
1
)
c0_1
=
create_func
(
F
,
'
x[0]<
0.1
? 0 :
'
+
p_tot
(
0.9
,
0.9
),
1
)
c0_1
=
create_func
(
F
,
'
x[0]<
'
+
str
(
bp
)
+
'
? 0 :
'
+
p_tot
(
0.9
,
0.9
),
1
)
Ga0_1
=
create_func
(
F
,
p_tot
(
1
,
1
/
9
),
1
)
c_tot_2
=
create_func
(
F
,
p_tot
(
0.9
,
0.45
),
1
)
c0_2
=
create_func
(
F
,
'
x[0]<
0.1
? 0 :
'
+
p_tot
(
0.9
,
0.45
),
1
)
c0_2
=
create_func
(
F
,
'
x[0]<
'
+
str
(
bp
)
+
'
? 0 :
'
+
p_tot
(
0.9
,
0.45
),
1
)
Ga0_2
=
create_func
(
F
,
p_tot
(
1
,
0.08
),
1
)
c_tot_3
=
create_func
(
F
,
p_tot
(
0.9
,
0.3
),
1
)
c0_3
=
create_func
(
F
,
'
x[0]<
0.1
? 0 :
'
+
p_tot
(
0.9
,
0.3
),
1
)
c0_3
=
create_func
(
F
,
'
x[0]<
'
+
str
(
bp
)
+
'
? 0 :
'
+
p_tot
(
0.9
,
0.3
),
1
)
Ga0_3
=
create_func
(
F
,
p_tot
(
1
,
0.145
),
1
)
c_tot_5
=
create_func
(
F
,
p_tot
(
0.9
,
0.18
),
1
)
c0_5
=
create_func
(
F
,
'
x[0]<
0.1
? 0 :
'
+
p_tot
(
0.9
,
0.18
),
1
)
c0_5
=
create_func
(
F
,
'
x[0]<
'
+
str
(
bp
)
+
'
? 0 :
'
+
p_tot
(
0.9
,
0.18
),
1
)
Ga0_5
=
create_func
(
F
,
p_tot
(
1
,
0.34
),
1
)
c_tot_8
=
create_func
(
F
,
p_tot
(
0.9
,
0.1125
),
1
)
c0_8
=
create_func
(
F
,
'
x[0]<
0.1
? 0 :
'
+
p_tot
(
0.9
,
0.1125
),
1
)
c0_8
=
create_func
(
F
,
'
x[0]<
'
+
str
(
bp
)
+
'
? 0 :
'
+
p_tot
(
0.9
,
0.1125
),
1
)
Ga0_8
=
create_func
(
F
,
p_tot
(
1
,
0.8
),
1
)
c_tot_9
=
create_func
(
F
,
p_tot
(
0.9
,
0.1
),
1
)
c0_9
=
create_func
(
F
,
'
x[0]<
0.1
? 0 :
'
+
p_tot
(
0.9
,
0.1
),
1
)
c0_9
=
create_func
(
F
,
'
x[0]<
'
+
str
(
bp
)
+
'
? 0 :
'
+
p_tot
(
0.9
,
0.1
),
1
)
Ga0_9
=
create_func
(
F
,
p_tot
(
1
,
1
),
1
)
sym
=
0
c0_1
=
calc_sim
(
c0_1
,
c_tot_1
,
Ga0_1
,
0.01
,
10
,
sym
)
c0_2
=
calc_sim
(
c0_2
,
c_tot_2
,
Ga0_2
,
0.01
,
10
,
sym
)
c0_3
=
calc_sim
(
c0_3
,
c_tot_3
,
Ga0_3
,
0.01
,
10
,
sym
)
c0_5
=
calc_sim
(
c0_5
,
c_tot_5
,
Ga0_5
,
0.01
,
10
,
sym
)
c0_8
=
calc_sim
(
c0_8
,
c_tot_8
,
Ga0_8
,
0.01
,
10
,
sym
)
c0_9
=
calc_sim
(
c0_9
,
c_tot_9
,
Ga0_9
,
0.01
,
10
,
sym
)
c0_1
=
calc_sim
(
c0_1
,
c_tot_1
,
Ga0_1
,
dt
,
10
,
sym
)
c0_2
=
calc_sim
(
c0_2
,
c_tot_2
,
Ga0_2
,
dt
,
10
,
sym
)
c0_3
=
calc_sim
(
c0_3
,
c_tot_3
,
Ga0_3
,
dt
,
10
,
sym
)
c0_5
=
calc_sim
(
c0_5
,
c_tot_5
,
Ga0_5
,
dt
,
10
,
sym
)
c0_8
=
calc_sim
(
c0_8
,
c_tot_8
,
Ga0_8
,
dt
,
10
,
sym
)
c0_9
=
calc_sim
(
c0_9
,
c_tot_9
,
Ga0_9
,
dt
,
10
,
sym
)
```
%% Cell type:code id: tags:
```
python
x
=
np
.
linspace
(
0
,
1
,
10000
)
plt
.
plot
(
x
,
eval_func
(
c0_1
,
x
))
plt
.
plot
(
x
,
eval_func
(
c0_2
,
x
))
plt
.
plot
(
x
,
eval_func
(
c0_3
,
x
))
plt
.
plot
(
x
,
eval_func
(
c0_5
,
x
))
plt
.
plot
(
x
,
eval_func
(
c0_8
,
x
))
plt
.
plot
(
x
,
eval_func
(
c0_9
,
x
))
# plt.xlim(0.08, 0.125125)
# plt.ylim(0., 0.325125)
plt
.
show
()
# Diffusion versus partitioning
list_Ga
=
[
Ga0_1
,
Ga0_2
,
Ga0_3
,
Ga0_5
,
Ga0_8
,
Ga0_9
]
list_Tot
=
[
c_tot_1
,
c_tot_2
,
c_tot_3
,
c_tot_5
,
c_tot_8
,
c_tot_9
]
D
=
[
eval_D
(
Ga
,
Tot
,
1
)
for
(
Ga
,
Tot
)
in
zip
(
list_Ga
,
list_Tot
)]
P
=
[
eval_P
(
Tot
,
[
0
,
1
])
for
Tot
in
list_Tot
]
plt
.
plot
(
D
,
P
)
plt
.
ylim
(
0
,
11
);
plt
.
xlim
(
0
,
1
)
plt
.
ylabel
(
'
P
'
);
plt
.
xlabel
(
'
Diffusion coefficient
'
)
plt
.
plot
(
np
.
linspace
(
0
,
1
,
100
),
9.5
*
(
np
.
linspace
(
0
,
1
,
100
))
**
(
1
/
2
))
```
%% Cell type:code id: tags:
```
python
# Plot outside, check invariance
x
=
np
.
linspace
(
0.1
,
1
,
1000
)
x
=
np
.
linspace
(
bp
,
1
,
1000
)
y1
=
eval_func
(
c0_1
,
x
)
y2
=
eval_func
(
c0_2
,
x
)
y3
=
eval_func
(
c0_3
,
x
)
y9
=
eval_func
(
c0_9
,
x
)
plt
.
plot
((
x
-
np
.
min
(
x
)),
y1
)
plt
.
plot
((
x
-
np
.
min
(
x
))
/
2
,
2
*
y2
)
plt
.
plot
((
x
-
np
.
min
(
x
))
/
3
,
3
*
y3
)
plt
.
plot
((
x
-
np
.
min
(
x
))
/
9
,
9
*
y9
)
# plt.xlim(0.0, 0.951252)
plt
.
plot
((
x
-
bp
),
y1
)
plt
.
plot
((
x
-
bp
)
/
2
,
2
*
y2
)
plt
.
plot
((
x
-
bp
)
/
3
,
3
*
y3
)
plt
.
plot
((
x
-
bp
)
/
9
,
9
*
y9
)
plt
.
xlim
(
0.0
,
0.02
)
plt
.
ylim
(
0.2
,
1
)
plt
.
show
()
```
%% Cell type:code id: tags:
```
python
# Plot inside, check invariance
x
=
np
.
linspace
(
0
,
0.1
,
1000
)
y1
=
eval_func
(
c0_1
,
x
)
-
np
.
min
(
eval_func
(
c0_1
,
x
))
y2
=
eval_func
(
c0_2
,
x
)
-
np
.
min
(
eval_func
(
c0_2
,
x
))
y3
=
eval_func
(
c0_3
,
x
)
-
np
.
min
(
eval_func
(
c0_3
,
x
))
y9
=
eval_func
(
c0_9
,
x
)
-
np
.
min
(
eval_func
(
c0_9
,
x
))
plt
.
plot
((
x
-
np
.
min
(
x
)),
y1
)
plt
.
plot
((
x
-
np
.
min
(
x
)),
y2
)
plt
.
plot
((
x
-
np
.
min
(
x
)),
y3
)
plt
.
plot
((
x
-
np
.
min
(
x
)),
y9
)
plt
.
xlim
(
0.0
,
0.1251252
)
plt
.
plot
((
x
-
np
.
min
(
x
)),
y1
/
eval_func
(
c0_1
,
[
0.08
])
)
plt
.
plot
((
x
-
np
.
min
(
x
)),
y2
/
eval_func
(
c0_2
,
[
0.08
])
)
plt
.
plot
((
x
-
np
.
min
(
x
)),
y3
/
eval_func
(
c0_3
,
[
0.08
])
)
plt
.
plot
((
x
-
np
.
min
(
x
)),
y9
/
eval_func
(
c0_9
,
[
0.08
])
)
plt
.
xlim
(
0.0
8
,
bp
)
plt
.
show
()
```
%% Cell type:code id: tags:
```
python
# Check partitioning
cp
=
eval_func
(
c0_9
,
x
)
print
(
'
Partitioning:
'
+
str
(
np
.
max
(
cp
[
1
:
1050
])
/
np
.
min
(
cp
[
999
:
1050
])))
```
%% Cell type:code id: tags:
```
python
# Set B=1
pi
=
0.8
po
=
0.5
-
np
.
sqrt
(
0.25
+
(
pi
**
2
-
pi
))
```
%% Cell type:code id: tags:
```
python
p1_i
=
0.9
;
p1_o
=
0.1
p2_i
=
0.8
;
p2_o
=
0.2
p3_i
=
0.7
;
p3_o
=
0.3
p4_i
=
0.9
;
p4_o
=
0.9
ct_1
=
create_func
(
F
,
p_tot
(
p1_i
,
p1_o
),
1
)
ct_2
=
create_func
(
F
,
p_tot
(
p2_i
,
p2_o
),
1
)
ct_3
=
create_func
(
F
,
p_tot
(
p3_i
,
p3_o
),
1
)
ct_4
=
create_func
(
F
,
p_tot
(
p4_i
,
p4_o
),
1
)
g_1
=
create_func
(
F
,
'
1
'
,
1
)
g_2
=
create_func
(
F
,
'
0.5
'
,
1
)
g_3
=
create_func
(
F
,
'
0.33333333333333333333
'
,
1
)
g_4
=
create_func
(
F
,
'
1
'
,
1
)
c0_1
=
create_func
(
F
,
'
x[0]<0.081 ? 0 :
'
+
p_tot
(
p1_i
,
p1_o
),
1
)
c0_2
=
create_func
(
F
,
'
x[0]<0.081 ? 0 :
'
+
p_tot
(
p2_i
,
p2_o
),
1
)
c0_3
=
create_func
(
F
,
'
x[0]<0.081 ? 0 :
'
+
p_tot
(
p3_i
,
p3_o
),
1
)
c0_4
=
create_func
(
F
,
'
x[0]<0.081 ? 0 :
'
+
p_tot
(
p4_i
,
p4_o
),
1
)
for
i
in
range
(
10
):
c0_1
=
calc_sim
(
c0_1
,
ct_1
,
g_1
,
0.001
,
2
,
2
)
# c0_2 = calc_sim(c0_2, ct_2, g_2, 0.01, 2, 2)
# c0_3 = calc_sim(c0_3, ct_3, g_3, 0.01, 2, 2)
c0_4
=
calc_sim
(
c0_4
,
ct_4
,
g_4
,
0.001
,
2
,
2
)
plt
.
plot
(
x
,
eval_func
(
c0_1
,
x
),
'
r
'
)
#/eval_func(c0_1, [0.099])
# plt.plot(x, eval_func(c0_2, x), 'g')
# plt.plot(x, eval_func(c0_3, x)/eval_func(c0_3, [0.099]), 'b')
plt
.
plot
(
x
,
eval_func
(
c0_4
,
x
),
'
k
'
)
plt
.
xlim
(
0.0
,
0.625
)
plt
.
ylim
(
0
,
1.1
)
```
%% Cell type:code id: tags:
```
python
plt
.
plot
(
x
,
eval_func
(
c0_1
,
x
)
/
0.9
)
plt
.
plot
(
x
,
eval_func
(
c0_2
,
x
)
/
0.8
)
plt
.
plot
(
x
,
eval_func
(
c0_3
,
x
)
/
0.7
)
plt
.
xlim
(
0.0
,
0.125
)
plt
.
ylim
(
0
,
1.1
)
```
%% Cell type:markdown id: tags:
## Radial diffusion equation
%% Cell type:code id: tags:
```
python
mesh
=
df
.
UnitIntervalMesh
(
1000
)
dt
=
0.001
F
=
df
.
FunctionSpace
(
mesh
,
'
CG
'
,
1
)
c0
=
df
.
Function
(
F
)
c0
.
interpolate
(
df
.
Expression
(
'
x[0]<0.5 && x[0]>0.2 ? 1:0
'
,
degree
=
1
))
q
=
df
.
TestFunction
(
F
)
c
=
df
.
Function
(
F
)
X
=
df
.
SpatialCoordinate
(
mesh
)
g
=
df
.
Expression
(
'
.00
'
,
degree
=
1
)
u_D
=
df
.
Expression
(
'
1
'
,
degree
=
1
)
def
boundary
(
x
,
on_boundary
):
return
on_boundary
bc
=
df
.
DirichletBC
(
F
,
u_D
,
boundary
)
# Weak form spherical symmetry
form
=
((
c
-
c0
)
/
dt
*
q
*
X
[
0
]
*
X
[
0
]
+
X
[
0
]
*
X
[
0
]
*
df
.
inner
(
df
.
grad
(
c
),
df
.
grad
(
q
))
-
c
.
dx
(
0
)
*
2
*
X
[
0
]
*
q
)
*
df
.
dx
# Weak form 1D
# form = ((c-c0)/dt* q + df.inner(df.grad(c), df.grad(q))) * df.dx
# Weak form 1D with .dx(0) notation for derivative in 1st direction.
# form = ((c-c0)/dt*q + c.dx(0)*q.dx(0)) * df.dx
t
=
0
# Solve in time
for
i
in
range
(
60
):
print
(
np
.
sum
([
x
*
x
*
c0
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
1000
)]))
df
.
solve
(
form
==
0
,
c
)
df
.
assign
(
c0
,
c
)
t
+=
dt
plt
.
plot
(
np
.
linspace
(
0
,
1
,
1000
),
[
c0
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
1000
)])
```
%% Cell type:code id: tags:
```
python
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment