Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Frap Theory
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
hubatsch
Frap Theory
Commits
5b4be0c3
Commit
5b4be0c3
authored
4 years ago
by
Lars Hubatsch
Browse files
Options
Downloads
Patches
Plain Diff
Adopt multi drop FEM for better accuracy, fix bug in z distance.
parent
07a05989
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Plots_Droplet_FRAP.ipynb
+8
-8
8 additions, 8 deletions
Plots_Droplet_FRAP.ipynb
with
8 additions
and
8 deletions
Plots_Droplet_FRAP.ipynb
+
8
−
8
View file @
5b4be0c3
...
@@ -100,12 +100,12 @@
...
@@ -100,12 +100,12 @@
"me = ['Meshes/multi_drop_gauss.xml', 'Meshes/multi_drop_gauss_med.xml',\n",
"me = ['Meshes/multi_drop_gauss.xml', 'Meshes/multi_drop_gauss_med.xml',\n",
" 'Meshes/multi_drop_gauss_far.xml', 'Meshes/multi_drop_gauss.xml',\n",
" 'Meshes/multi_drop_gauss_far.xml', 'Meshes/multi_drop_gauss.xml',\n",
" 'Meshes/multi_drop_gauss_med.xml', 'Meshes/multi_drop_gauss_far.xml']\n",
" 'Meshes/multi_drop_gauss_med.xml', 'Meshes/multi_drop_gauss_far.xml']\n",
"point_lists = [[[4, 4.5, 0.5], [4, 3.5, 0.5], [3.5, 4, 0.5], [4.5, 4, 0.5]],\n",
"point_lists = [[[4, 4.5, 0.
2
5], [4, 3.5, 0.
2
5], [3.5, 4, 0.
2
5], [4.5, 4, 0.
2
5]],\n",
" [[4, 5, 0.5], [4, 3, 0.5], [3, 4, 0.5], [5, 4, 0.5]],\n",
" [[4, 5, 0.
2
5], [4, 3, 0.
2
5], [3, 4, 0.
2
5], [5, 4, 0.
2
5]],\n",
" [[4, 5.5, 0.5], [4, 2.5, 0.5], [2.5, 4, 0.5], [5.5, 4, 0.5]],\n",
" [[4, 5.5, 0.
2
5], [4, 2.5, 0.
2
5], [2.5, 4, 0.
2
5], [5.5, 4, 0.
2
5]],\n",
" [[4, 4.5, 0.5], [4, 3.5, 0.5], [3.5, 4, 0.5], [4.5, 4, 0.5]],\n",
" [[4, 4.5, 0.
2
5], [4, 3.5, 0.
2
5], [3.5, 4, 0.
2
5], [4.5, 4, 0.
2
5]],\n",
" [[4, 5, 0.5], [4, 3, 0.5], [3, 4, 0.5], [5, 4, 0.5]],\n",
" [[4, 5, 0.
2
5], [4, 3, 0.
2
5], [3, 4, 0.
2
5], [5, 4, 0.
2
5]],\n",
" [[4, 5.5, 0.5], [4, 2.5, 0.5], [2.5, 4, 0.5], [5.5, 4, 0.5]]]\n",
" [[4, 5.5, 0.
2
5], [4, 2.5, 0.
2
5], [2.5, 4, 0.
2
5], [5.5, 4, 0.
2
5]]]\n",
"phi_tot_int = [.99, .99, .99, .9, .9, .9]\n",
"phi_tot_int = [.99, .99, .99, .9, .9, .9]\n",
"phi_tot_ext = [.01, .01, .01, .1, .1, .1]\n",
"phi_tot_ext = [.01, .01, .01, .1, .1, .1]\n",
"G_in = [1, 1, 1, .1, .1, .1]\n",
"G_in = [1, 1, 1, .1, .1, .1]\n",
...
@@ -115,8 +115,8 @@
...
@@ -115,8 +115,8 @@
"\n",
"\n",
"for p, m, p_i, p_e, G_i, G_o in zip(point_lists, me, phi_tot_int,\n",
"for p, m, p_i, p_e, G_i, G_o in zip(point_lists, me, phi_tot_int,\n",
" phi_tot_ext, G_in, G_out):\n",
" phi_tot_ext, G_in, G_out):\n",
" f = frap_solver([4, 4, 0.5], m, name='FRAP_multi_'+m[:-4]+str(G_i), point_list=p,\n",
" f = frap_solver([4, 4, 0.
2
5], m, name='FRAP_multi
/FRAP_multi
_'+m[:-4]+str(G_i), point_list=p,\n",
" T=
50
, phi_tot_int=p_i, phi_tot_ext=p_e, G_in=G_i, G_out=G_o)\n",
" T=
240, dt=0.02
, phi_tot_int=p_i, phi_tot_ext=p_e, G_in=G_i, G_out=G_o)\n",
" f.solve_frap()\n",
" f.solve_frap()\n",
" f_i.append(f)"
" f_i.append(f)"
]
]
...
...
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
from
fem_sol
import
frap_solver
from
fem_sol
import
frap_solver
from
matplotlib
import
cm
,
rc
,
rcParams
from
matplotlib
import
cm
,
rc
,
rcParams
from
matplotlib.ticker
import
MaxNLocator
from
matplotlib.ticker
import
MaxNLocator
import
fem_utils
import
fem_utils
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
import
seaborn
as
sns
import
seaborn
as
sns
from
scipy.interpolate
import
interp1d
from
scipy.interpolate
import
interp1d
fol
=
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/
'
fol
=
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/
'
# sns.set_style("ticks")
# sns.set_style("ticks")
rcParams
[
'
axes.linewidth
'
]
=
0.75
rcParams
[
'
axes.linewidth
'
]
=
0.75
rcParams
[
'
xtick.major.width
'
]
=
0.75
rcParams
[
'
xtick.major.width
'
]
=
0.75
rcParams
[
'
ytick.major.width
'
]
=
0.75
rcParams
[
'
ytick.major.width
'
]
=
0.75
# rcParams['text.usetex']=True
# rcParams['text.usetex']=True
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# Define colors
# Define colors
pa
=
sns
.
color_palette
(
"
Set2
"
)
pa
=
sns
.
color_palette
(
"
Set2
"
)
sns
.
set_palette
(
pa
)
sns
.
set_palette
(
pa
)
grey
=
(
0.6
,
0.6
,
0.6
)
grey
=
(
0.6
,
0.6
,
0.6
)
dark_grey
=
(
0.2
,
0.2
,
0.2
)
dark_grey
=
(
0.2
,
0.2
,
0.2
)
green
=
pa
[
0
]
green
=
pa
[
0
]
blue
=
pa
[
2
]
blue
=
pa
[
2
]
red
=
pa
[
1
]
red
=
pa
[
1
]
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
import
pylab
as
pl
import
pylab
as
pl
params
=
{
'
legend.fontsize
'
:
9
,
params
=
{
'
legend.fontsize
'
:
9
,
'
legend.handlelength
'
:
1
}
'
legend.handlelength
'
:
1
}
pl
.
rcParams
.
update
(
params
)
pl
.
rcParams
.
update
(
params
)
def
nice_fig
(
xla
,
yla
,
xli
,
yli
,
size
,
fs
=
12
):
def
nice_fig
(
xla
,
yla
,
xli
,
yli
,
size
,
fs
=
12
):
rc
(
'
font
'
,
**
{
'
family
'
:
'
sans-serif
'
,
'
sans-serif
'
:[
'
Helvetica
'
]})
rc
(
'
font
'
,
**
{
'
family
'
:
'
sans-serif
'
,
'
sans-serif
'
:[
'
Helvetica
'
]})
# rc('font',**{'family':'serif','serif':['Palatino']})
# rc('font',**{'family':'serif','serif':['Palatino']})
plt
.
gcf
().
set_size_inches
(
size
[
0
],
size
[
1
])
plt
.
gcf
().
set_size_inches
(
size
[
0
],
size
[
1
])
plt
.
xlabel
(
xla
,
fontsize
=
fs
)
plt
.
xlabel
(
xla
,
fontsize
=
fs
)
plt
.
ylabel
(
yla
,
fontsize
=
fs
)
plt
.
ylabel
(
yla
,
fontsize
=
fs
)
plt
.
xlim
(
xli
)
plt
.
xlim
(
xli
)
plt
.
ylim
(
yli
)
plt
.
ylim
(
yli
)
plt
.
tick_params
(
axis
=
'
both
'
,
which
=
'
major
'
,
labelsize
=
fs
)
plt
.
tick_params
(
axis
=
'
both
'
,
which
=
'
major
'
,
labelsize
=
fs
)
def
save_nice_fig
(
name
,
form
=
'
pdf
'
):
def
save_nice_fig
(
name
,
form
=
'
pdf
'
):
plt
.
savefig
(
name
,
format
=
form
,
dpi
=
300
,
bbox_inches
=
'
tight
'
,
plt
.
savefig
(
name
,
format
=
form
,
dpi
=
300
,
bbox_inches
=
'
tight
'
,
transparent
=
True
)
transparent
=
True
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### FRAP geometries
### FRAP geometries
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# For radial average: define angles and radial spacing
# For radial average: define angles and radial spacing
alphas
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
20
)
alphas
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
20
)
ns
=
np
.
c_
[
np
.
cos
(
alphas
),
np
.
sin
(
alphas
),
np
.
zeros
(
len
(
alphas
))]
ns
=
np
.
c_
[
np
.
cos
(
alphas
),
np
.
sin
(
alphas
),
np
.
zeros
(
len
(
alphas
))]
eps
=
np
.
linspace
(
0
,
0.23
,
100
)
eps
=
np
.
linspace
(
0
,
0.23
,
100
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
#### Multi Drop
#### Multi Drop
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
me
=
[
'
Meshes/multi_drop_gauss.xml
'
,
'
Meshes/multi_drop_gauss_med.xml
'
,
me
=
[
'
Meshes/multi_drop_gauss.xml
'
,
'
Meshes/multi_drop_gauss_med.xml
'
,
'
Meshes/multi_drop_gauss_far.xml
'
,
'
Meshes/multi_drop_gauss.xml
'
,
'
Meshes/multi_drop_gauss_far.xml
'
,
'
Meshes/multi_drop_gauss.xml
'
,
'
Meshes/multi_drop_gauss_med.xml
'
,
'
Meshes/multi_drop_gauss_far.xml
'
]
'
Meshes/multi_drop_gauss_med.xml
'
,
'
Meshes/multi_drop_gauss_far.xml
'
]
point_lists
=
[[[
4
,
4.5
,
0.5
],
[
4
,
3.5
,
0.5
],
[
3.5
,
4
,
0.5
],
[
4.5
,
4
,
0.5
]],
point_lists
=
[[[
4
,
4.5
,
0.
2
5
],
[
4
,
3.5
,
0.
2
5
],
[
3.5
,
4
,
0.
2
5
],
[
4.5
,
4
,
0.
2
5
]],
[[
4
,
5
,
0.5
],
[
4
,
3
,
0.5
],
[
3
,
4
,
0.5
],
[
5
,
4
,
0.5
]],
[[
4
,
5
,
0.
2
5
],
[
4
,
3
,
0.
2
5
],
[
3
,
4
,
0.
2
5
],
[
5
,
4
,
0.
2
5
]],
[[
4
,
5.5
,
0.5
],
[
4
,
2.5
,
0.5
],
[
2.5
,
4
,
0.5
],
[
5.5
,
4
,
0.5
]],
[[
4
,
5.5
,
0.
2
5
],
[
4
,
2.5
,
0.
2
5
],
[
2.5
,
4
,
0.
2
5
],
[
5.5
,
4
,
0.
2
5
]],
[[
4
,
4.5
,
0.5
],
[
4
,
3.5
,
0.5
],
[
3.5
,
4
,
0.5
],
[
4.5
,
4
,
0.5
]],
[[
4
,
4.5
,
0.
2
5
],
[
4
,
3.5
,
0.
2
5
],
[
3.5
,
4
,
0.
2
5
],
[
4.5
,
4
,
0.
2
5
]],
[[
4
,
5
,
0.5
],
[
4
,
3
,
0.5
],
[
3
,
4
,
0.5
],
[
5
,
4
,
0.5
]],
[[
4
,
5
,
0.
2
5
],
[
4
,
3
,
0.
2
5
],
[
3
,
4
,
0.
2
5
],
[
5
,
4
,
0.
2
5
]],
[[
4
,
5.5
,
0.5
],
[
4
,
2.5
,
0.5
],
[
2.5
,
4
,
0.5
],
[
5.5
,
4
,
0.5
]]]
[[
4
,
5.5
,
0.
2
5
],
[
4
,
2.5
,
0.
2
5
],
[
2.5
,
4
,
0.
2
5
],
[
5.5
,
4
,
0.
2
5
]]]
phi_tot_int
=
[.
99
,
.
99
,
.
99
,
.
9
,
.
9
,
.
9
]
phi_tot_int
=
[.
99
,
.
99
,
.
99
,
.
9
,
.
9
,
.
9
]
phi_tot_ext
=
[.
01
,
.
01
,
.
01
,
.
1
,
.
1
,
.
1
]
phi_tot_ext
=
[.
01
,
.
01
,
.
01
,
.
1
,
.
1
,
.
1
]
G_in
=
[
1
,
1
,
1
,
.
1
,
.
1
,
.
1
]
G_in
=
[
1
,
1
,
1
,
.
1
,
.
1
,
.
1
]
G_out
=
[
1
,
1
,
1
,
0.99
/
0.9
,
0.99
/
0.9
,
0.99
/
0.9
]
G_out
=
[
1
,
1
,
1
,
0.99
/
0.9
,
0.99
/
0.9
,
0.99
/
0.9
]
f_i
=
[]
f_i
=
[]
for
p
,
m
,
p_i
,
p_e
,
G_i
,
G_o
in
zip
(
point_lists
,
me
,
phi_tot_int
,
for
p
,
m
,
p_i
,
p_e
,
G_i
,
G_o
in
zip
(
point_lists
,
me
,
phi_tot_int
,
phi_tot_ext
,
G_in
,
G_out
):
phi_tot_ext
,
G_in
,
G_out
):
f
=
frap_solver
([
4
,
4
,
0.5
],
m
,
name
=
'
FRAP_multi_
'
+
m
[:
-
4
]
+
str
(
G_i
),
point_list
=
p
,
f
=
frap_solver
([
4
,
4
,
0.
2
5
],
m
,
name
=
'
FRAP_multi
/FRAP_multi
_
'
+
m
[:
-
4
]
+
str
(
G_i
),
point_list
=
p
,
T
=
50
,
phi_tot_int
=
p_i
,
phi_tot_ext
=
p_e
,
G_in
=
G_i
,
G_out
=
G_o
)
T
=
240
,
dt
=
0.02
,
phi_tot_int
=
p_i
,
phi_tot_ext
=
p_e
,
G_in
=
G_i
,
G_out
=
G_o
)
f
.
solve_frap
()
f
.
solve_frap
()
f_i
.
append
(
f
)
f_i
.
append
(
f
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
profs
=
[]
profs
=
[]
for
i
in
range
(
len
(
f_i
)):
for
i
in
range
(
len
(
f_i
)):
# if i>2:
# if i>2:
profs
.
append
([])
profs
.
append
([])
for
j
in
range
(
50
):
for
j
in
range
(
50
):
values
=
[]
values
=
[]
fs
=
fem_utils
.
load_time_point
(
f_i
[
i
].
name
+
'
t_p_
'
+
str
(
j
)
+
'
.h5
'
,
fs
=
fem_utils
.
load_time_point
(
f_i
[
i
].
name
+
'
t_p_
'
+
str
(
j
)
+
'
.h5
'
,
f_i
[
i
].
mesh
)
f_i
[
i
].
mesh
)
for
n
in
ns
:
for
n
in
ns
:
values
.
append
([
fs
([
4
,
4
,
0.5
]
+
e
*
n
)
for
e
in
eps
])
values
.
append
([
fs
([
4
,
4
,
0.5
]
+
e
*
n
)
for
e
in
eps
])
profs
[
i
].
append
(
np
.
mean
(
np
.
transpose
(
values
),
1
))
profs
[
i
].
append
(
np
.
mean
(
np
.
transpose
(
values
),
1
))
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
np
.
savetxt
(
'
t_p.csv
'
,
profs
,
delimiter
=
'
,
'
)
np
.
savetxt
(
'
t_p.csv
'
,
profs
,
delimiter
=
'
,
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
ft
=
f_i
[
1
]
ft
=
f_i
[
1
]
meta_data
=
np
.
r_
[
ft
.
dt
,
ft
.
T
,
eps
]
meta_data
=
np
.
r_
[
ft
.
dt
,
ft
.
T
,
eps
]
np
.
savetxt
(
'
meta_data.csv
'
,
meta_data
,
delimiter
=
'
,
'
)
np
.
savetxt
(
'
meta_data.csv
'
,
meta_data
,
delimiter
=
'
,
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
plt
.
plot
(
eps
,
np
.
transpose
(
profs
)[:,:])
plt
.
plot
(
eps
,
np
.
transpose
(
profs
)[:,:])
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
nice_fig
(
'
time $t$ [s]
'
,
'
intensity (a.u)
'
,
[
0
,
50
],
[
0
,
1.1
],
[
1.5
,
2
])
nice_fig
(
'
time $t$ [s]
'
,
'
intensity (a.u)
'
,
[
0
,
50
],
[
0
,
1.1
],
[
1.5
,
2
])
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
0
].
phi_tot_int
for
x
in
profs
[
0
]],
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
0
].
phi_tot_int
for
x
in
profs
[
0
]],
lw
=
2
,
label
=
'
d=0.5
'
,
ls
=
'
-
'
)
lw
=
2
,
label
=
'
d=0.5
'
,
ls
=
'
-
'
)
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
1
].
phi_tot_int
for
x
in
profs
[
1
]],
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
1
].
phi_tot_int
for
x
in
profs
[
1
]],
lw
=
2
,
label
=
'
d=1
'
,
ls
=
'
--
'
)
lw
=
2
,
label
=
'
d=1
'
,
ls
=
'
--
'
)
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
2
].
phi_tot_int
for
x
in
profs
[
2
]],
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
2
].
phi_tot_int
for
x
in
profs
[
2
]],
lw
=
2
,
label
=
'
d=1.5
'
,
ls
=
'
:
'
)
lw
=
2
,
label
=
'
d=1.5
'
,
ls
=
'
:
'
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
title
(
'
$P=99}$
'
,
size
=
12
)
plt
.
title
(
'
$P=99}$
'
,
size
=
12
)
plt
.
gca
().
get_yaxis
().
set_visible
(
False
)
plt
.
gca
().
get_yaxis
().
set_visible
(
False
)
save_nice_fig
(
fol
+
'
Fig3/tot_recov_neighbours_bad.pdf
'
)
save_nice_fig
(
fol
+
'
Fig3/tot_recov_neighbours_bad.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
nice_fig
(
'
time $t$ [s]
'
,
r
'
av. volume fraction $\bar{\phi}_\mathrm{u}$
'
,
[
0
,
30
],
[
0
,
1.1
],
[
1.5
,
2
])
nice_fig
(
'
time $t$ [s]
'
,
r
'
av. volume fraction $\bar{\phi}_\mathrm{u}$
'
,
[
0
,
30
],
[
0
,
1.1
],
[
1.5
,
2
])
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
3
].
phi_tot_int
for
x
in
profs
[
3
]],
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
3
].
phi_tot_int
for
x
in
profs
[
3
]],
lw
=
2
,
label
=
'
$d=0.5 \,\mathrm{\mu m}$
'
,
ls
=
'
-
'
)
lw
=
2
,
label
=
'
$d=0.5 \,\mathrm{\mu m}$
'
,
ls
=
'
-
'
)
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
4
].
phi_tot_int
for
x
in
profs
[
4
]],
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
4
].
phi_tot_int
for
x
in
profs
[
4
]],
lw
=
2
,
label
=
'
$d=1 \,\mathrm{\mu m}$
'
,
ls
=
'
--
'
)
lw
=
2
,
label
=
'
$d=1 \,\mathrm{\mu m}$
'
,
ls
=
'
--
'
)
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
5
].
phi_tot_int
for
x
in
profs
[
5
]],
plt
.
plot
([
np
.
mean
(
x
)
/
f_i
[
5
].
phi_tot_int
for
x
in
profs
[
5
]],
lw
=
2
,
label
=
'
$d=1.5 \,\mathrm{\mu m}$
'
,
ls
=
'
:
'
)
lw
=
2
,
label
=
'
$d=1.5 \,\mathrm{\mu m}$
'
,
ls
=
'
:
'
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
title
(
'
$P=9$
'
,
size
=
12
)
plt
.
title
(
'
$P=9$
'
,
size
=
12
)
plt
.
legend
(
prop
=
{
'
size
'
:
9
},
frameon
=
False
,
loc
=
(
0.22
,
0.025
),
plt
.
legend
(
prop
=
{
'
size
'
:
9
},
frameon
=
False
,
loc
=
(
0.22
,
0.025
),
handletextpad
=
0.4
,
labelspacing
=
0.2
)
handletextpad
=
0.4
,
labelspacing
=
0.2
)
save_nice_fig
(
fol
+
'
Fig3/tot_recov_neighbours_good.pdf
'
)
save_nice_fig
(
fol
+
'
Fig3/tot_recov_neighbours_good.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
ml
=
np
.
loadtxt
(
'
/Users/hubatsch/Desktop/DropletFRAP/matlab_fit.csv
'
,
ml
=
np
.
loadtxt
(
'
/Users/hubatsch/Desktop/DropletFRAP/matlab_fit.csv
'
,
delimiter
=
'
,
'
)
delimiter
=
'
,
'
)
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
0.25
],
[
0
,
1.1
],
[
3.8
,
2
])
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
0.25
],
[
0
,
1.1
],
[
3.8
,
2
])
l_sim
=
plt
.
plot
(
eps
,
np
.
transpose
(
profs
[
0
])[:,::
8
]
/
f_i
[
0
].
phi_tot_int
,
c
=
green
,
l_sim
=
plt
.
plot
(
eps
,
np
.
transpose
(
profs
[
0
])[:,::
8
]
/
f_i
[
0
].
phi_tot_int
,
c
=
green
,
lw
=
4.5
,
alpha
=
0.7
)
lw
=
4.5
,
alpha
=
0.7
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
l_fit
=
plt
.
plot
(
np
.
linspace
(
0
,
0.23
,
100
),
np
.
transpose
(
ml
)[:,::
8
],
c
=
'
k
'
,
lw
=
1.5
)
l_fit
=
plt
.
plot
(
np
.
linspace
(
0
,
0.23
,
100
),
np
.
transpose
(
ml
)[:,::
8
],
c
=
'
k
'
,
lw
=
1.5
)
plt
.
legend
([
l_sim
[
0
],
l_fit
[
0
]],
[
'
Model, eq. (6)
'
,
'
Fit, eq. (1)
'
],
prop
=
{
'
size
'
:
9
},
frameon
=
False
)
plt
.
legend
([
l_sim
[
0
],
l_fit
[
0
]],
[
'
Model, eq. (6)
'
,
'
Fit, eq. (1)
'
],
prop
=
{
'
size
'
:
9
},
frameon
=
False
)
save_nice_fig
(
fol
+
'
Fig3/spat_recov_neighbours.pdf
'
)
save_nice_fig
(
fol
+
'
Fig3/spat_recov_neighbours.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
#### Coverslip
#### Coverslip
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# Define parameters for all simulations
# Define parameters for all simulations
point_list
=
[[
4
,
4
,
0.25
],
[
4
,
4
,
1.5
],
[
4
,
4
,
4
],
point_list
=
[[
4
,
4
,
0.25
],
[
4
,
4
,
1.5
],
[
4
,
4
,
4
],
[
4
,
4
,
0.25
],
[
4
,
4
,
1.5
],
[
4
,
4
,
4
]]
[
4
,
4
,
0.25
],
[
4
,
4
,
1.5
],
[
4
,
4
,
4
]]
me
=
[
'
coverslip.xml
'
,
'
1_5.xml
'
,
'
symmetric.xml
'
,
me
=
[
'
coverslip.xml
'
,
'
1_5.xml
'
,
'
symmetric.xml
'
,
'
coverslip.xml
'
,
'
1_5.xml
'
,
'
symmetric.xml
'
]
'
coverslip.xml
'
,
'
1_5.xml
'
,
'
symmetric.xml
'
]
phi_tot_int
=
[.
99
,
.
99
,
.
99
,
.
9
,
.
9
,
.
9
]
phi_tot_int
=
[.
99
,
.
99
,
.
99
,
.
9
,
.
9
,
.
9
]
phi_tot_ext
=
[.
01
,
.
01
,
.
01
,
.
1
,
.
1
,
.
1
]
phi_tot_ext
=
[.
01
,
.
01
,
.
01
,
.
1
,
.
1
,
.
1
]
G_in
=
[
1
,
1
,
1
,
.
1
,
.
1
,
.
1
]
G_in
=
[
1
,
1
,
1
,
.
1
,
.
1
,
.
1
]
G_out
=
[
1
,
1
,
1
,
0.99
/
0.9
,
0.99
/
0.9
,
0.99
/
0.9
]
G_out
=
[
1
,
1
,
1
,
0.99
/
0.9
,
0.99
/
0.9
,
0.99
/
0.9
]
f_cs
=
[]
f_cs
=
[]
# Zip all parameters, iterate
# Zip all parameters, iterate
for
p
,
m
,
p_i
,
p_e
,
G_i
,
G_o
,
i
in
zip
(
point_list
,
me
,
phi_tot_int
,
for
p
,
m
,
p_i
,
p_e
,
G_i
,
G_o
,
i
in
zip
(
point_list
,
me
,
phi_tot_int
,
phi_tot_ext
,
G_in
,
G_out
,
range
(
len
(
me
))):
phi_tot_ext
,
G_in
,
G_out
,
range
(
len
(
me
))):
if
i
in
[
0
,
1
,
2
,
3
,
4
,
5
]:
if
i
in
[
0
,
1
,
2
,
3
,
4
,
5
]:
f_cs
.
append
(
frap_solver
(
p
,
'
Meshes/single_drop_
'
+
m
,
f_cs
.
append
(
frap_solver
(
p
,
'
Meshes/single_drop_
'
+
m
,
name
=
'
FRAP_coverslip/FRAP_
'
+
m
[:
-
4
]
+
str
(
G_i
),
T
=
240
,
name
=
'
FRAP_coverslip/FRAP_
'
+
m
[:
-
4
]
+
str
(
G_i
),
T
=
240
,
phi_tot_int
=
p_i
,
dt
=
0.02
,
phi_tot_ext
=
p_e
,
G_in
=
G_i
,
phi_tot_int
=
p_i
,
dt
=
0.02
,
phi_tot_ext
=
p_e
,
G_in
=
G_i
,
G_out
=
G_o
))
G_out
=
G_o
))
# f_cs[-1].solve_frap()
# f_cs[-1].solve_frap()
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
z
=
[
0.25
,
1.5
,
4
,
0.25
,
1.5
,
4
]
z
=
[
0.25
,
1.5
,
4
,
0.25
,
1.5
,
4
]
# eps = np.linspace(0, 3.5, 100) # for full profile
# eps = np.linspace(0, 3.5, 100) # for full profile
eps
=
np
.
r_
[
np
.
linspace
(
0
,
0.4
,
100
),
np
.
linspace
(
0.41
,
2
,
20
)]
eps
=
np
.
r_
[
np
.
linspace
(
0
,
0.4
,
100
),
np
.
linspace
(
0.41
,
2
,
20
)]
profs_cs
=
[]
profs_cs
=
[]
for
i
,
z_i
in
enumerate
(
z
):
for
i
,
z_i
in
enumerate
(
z
):
profs_cs
.
append
([])
profs_cs
.
append
([])
for
j
in
range
(
240
):
for
j
in
range
(
240
):
values
=
[]
values
=
[]
fs
=
fem_utils
.
load_time_point
(
f_cs
[
i
].
name
+
fs
=
fem_utils
.
load_time_point
(
f_cs
[
i
].
name
+
'
t_p_
'
+
str
(
j
)
+
'
.h5
'
,
f_cs
[
i
].
mesh
)
'
t_p_
'
+
str
(
j
)
+
'
.h5
'
,
f_cs
[
i
].
mesh
)
for
n
in
ns
:
for
n
in
ns
:
values
.
append
([
fs
([
4
,
4
,
z_i
]
+
e
*
n
)
for
e
in
eps
])
values
.
append
([
fs
([
4
,
4
,
z_i
]
+
e
*
n
)
for
e
in
eps
])
profs_cs
[
i
].
append
(
np
.
mean
(
np
.
transpose
(
values
),
1
))
profs_cs
[
i
].
append
(
np
.
mean
(
np
.
transpose
(
values
),
1
))
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# Write out profiles to .csv
# Write out profiles to .csv
for
i
in
[
0
,
1
,
2
,
3
,
4
,
5
]:
for
i
in
[
0
,
1
,
2
,
3
,
4
,
5
]:
z
=
str
(
f_cs
[
i
].
cent_poin
[
-
1
])
z
=
str
(
f_cs
[
i
].
cent_poin
[
-
1
])
P
=
str
(
f_cs
[
i
].
phi_tot_int
/
f_cs
[
i
].
phi_tot_ext
)
P
=
str
(
f_cs
[
i
].
phi_tot_int
/
f_cs
[
i
].
phi_tot_ext
)
np
.
savetxt
(
'
eps_
'
+
str
(
i
)
+
'
.csv
'
,
eps
,
delimiter
=
'
,
'
)
np
.
savetxt
(
'
eps_
'
+
str
(
i
)
+
'
.csv
'
,
eps
,
delimiter
=
'
,
'
)
np
.
savetxt
(
'
t_p_long_coverslip_
'
+
P
+
'
_
'
+
z
+
'
.csv
'
,
np
.
savetxt
(
'
t_p_long_coverslip_
'
+
P
+
'
_
'
+
z
+
'
.csv
'
,
profs_cs
[
i
][
1
:],
delimiter
=
'
,
'
)
profs_cs
[
i
][
1
:],
delimiter
=
'
,
'
)
meta_data
=
np
.
r_
[
f_cs
[
i
].
dt
,
f_cs
[
i
].
T
-
1
,
eps
,
0.25
]
# last param: droplet radius
meta_data
=
np
.
r_
[
f_cs
[
i
].
dt
,
f_cs
[
i
].
T
-
1
,
eps
,
0.25
]
# last param: droplet radius
np
.
savetxt
(
'
meta_data_long_coverslip_
'
+
P
+
'
_
'
+
z
+
'
.csv
'
,
meta_data
,
delimiter
=
'
,
'
)
np
.
savetxt
(
'
meta_data_long_coverslip_
'
+
P
+
'
_
'
+
z
+
'
.csv
'
,
meta_data
,
delimiter
=
'
,
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
nice_fig
(
'
time $t$ [s]
'
,
''
,
[
0
,
50
],
[
0
,
1.1
],
[
1.5
,
2
])
nice_fig
(
'
time $t$ [s]
'
,
''
,
[
0
,
50
],
[
0
,
1.1
],
[
1.5
,
2
])
ls
=
[
'
-
'
,
'
--
'
,
'
-.
'
]
ls
=
[
'
-
'
,
'
--
'
,
'
-.
'
]
for
i
,
f
in
enumerate
(
f_cs
[
0
:
3
]):
for
i
,
f
in
enumerate
(
f_cs
[
0
:
3
]):
plt
.
plot
([
np
.
mean
(
x
)
/
f
.
phi_tot_int
for
x
in
profs_cs
[
i
]],
plt
.
plot
([
np
.
mean
(
x
)
/
f
.
phi_tot_int
for
x
in
profs_cs
[
i
]],
label
=
'
d=
'
+
str
(
z
[
i
]),
ls
=
ls
[
i
],
lw
=
2
)
label
=
'
d=
'
+
str
(
z
[
i
]),
ls
=
ls
[
i
],
lw
=
2
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
title
(
'
$P=99$
'
,
size
=
12
)
plt
.
title
(
'
$P=99$
'
,
size
=
12
)
plt
.
gca
().
get_yaxis
().
set_visible
(
False
)
plt
.
gca
().
get_yaxis
().
set_visible
(
False
)
save_nice_fig
(
fol
+
'
Fig3/tot_recov_cs_bad.pdf
'
)
save_nice_fig
(
fol
+
'
Fig3/tot_recov_cs_bad.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
nice_fig
(
'
time $t$ [s]
'
,
r
'
av. volume fraction $\bar{\phi}_\mathrm{u}$
'
,
[
0
,
30
],
[
0
,
1.1
],
[
1.5
,
2
])
nice_fig
(
'
time $t$ [s]
'
,
r
'
av. volume fraction $\bar{\phi}_\mathrm{u}$
'
,
[
0
,
30
],
[
0
,
1.1
],
[
1.5
,
2
])
ls
=
[
'
-
'
,
'
--
'
,
'
-.
'
]
ls
=
[
'
-
'
,
'
--
'
,
'
-.
'
]
for
i
,
f
in
enumerate
(
f_cs
[
3
:]):
for
i
,
f
in
enumerate
(
f_cs
[
3
:]):
plt
.
plot
([
np
.
mean
(
x
)
/
f
.
phi_tot_int
for
x
in
profs_cs
[
i
+
3
]],
plt
.
plot
([
np
.
mean
(
x
)
/
f
.
phi_tot_int
for
x
in
profs_cs
[
i
+
3
]],
label
=
'
$h=$
'
+
str
(
z
[
i
])
+
'
$\,\mathrm{\mu m}$
'
,
lw
=
2
,
ls
=
ls
[
i
])
label
=
'
$h=$
'
+
str
(
z
[
i
])
+
'
$\,\mathrm{\mu m}$
'
,
lw
=
2
,
ls
=
ls
[
i
])
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
title
(
'
$P=9$
'
,
size
=
12
)
plt
.
title
(
'
$P=9$
'
,
size
=
12
)
plt
.
legend
(
prop
=
{
'
size
'
:
9
},
frameon
=
False
,
loc
=
(
0.22
,
0.025
),
plt
.
legend
(
prop
=
{
'
size
'
:
9
},
frameon
=
False
,
loc
=
(
0.22
,
0.025
),
handletextpad
=
0.4
,
labelspacing
=
0.2
)
handletextpad
=
0.4
,
labelspacing
=
0.2
)
save_nice_fig
(
fol
+
'
Fig3/tot_recov_cs_good.pdf
'
)
save_nice_fig
(
fol
+
'
Fig3/tot_recov_cs_good.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
ml_neigh
=
np
.
loadtxt
(
'
/Users/hubatsch/Desktop/DropletFRAP/matlab_fit_neigh.csv
'
,
ml_neigh
=
np
.
loadtxt
(
'
/Users/hubatsch/Desktop/DropletFRAP/matlab_fit_neigh.csv
'
,
delimiter
=
'
,
'
)
delimiter
=
'
,
'
)
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
0.25
],
[
0
,
1.1
],
[
3.8
,
2
])
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
0.25
],
[
0
,
1.1
],
[
3.8
,
2
])
l_sim
=
plt
.
plot
(
eps
,
np
.
transpose
(
profs_cs
[
0
])[:,::
8
]
/
f_cs
[
0
].
phi_tot_int
,
c
=
green
,
l_sim
=
plt
.
plot
(
eps
,
np
.
transpose
(
profs_cs
[
0
])[:,::
8
]
/
f_cs
[
0
].
phi_tot_int
,
c
=
green
,
lw
=
4.5
,
alpha
=
0.7
)
lw
=
4.5
,
alpha
=
0.7
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
plt
.
plot
(
range
(
0
,
100
),
np
.
ones
(
100
),
linestyle
=
'
--
'
,
color
=
'
k
'
)
l_fit
=
plt
.
plot
(
np
.
linspace
(
0
,
0.23
,
100
),
np
.
transpose
(
ml_neigh
)[:,::
8
],
l_fit
=
plt
.
plot
(
np
.
linspace
(
0
,
0.23
,
100
),
np
.
transpose
(
ml_neigh
)[:,::
8
],
ls
=
'
-
'
,
c
=
'
k
'
,
lw
=
1
)
ls
=
'
-
'
,
c
=
'
k
'
,
lw
=
1
)
plt
.
legend
([
l_sim
[
0
],
l_fit
[
0
]],
[
'
Model, eq. (6)
'
,
'
Fit, eq. (1)
'
],
frameon
=
False
,
loc
=
(
0.63
,
0.0
))
plt
.
legend
([
l_sim
[
0
],
l_fit
[
0
]],
[
'
Model, eq. (6)
'
,
'
Fit, eq. (1)
'
],
frameon
=
False
,
loc
=
(
0.63
,
0.0
))
save_nice_fig
(
fol
+
'
Fig3/spat_recov_coverslip.pdf
'
)
save_nice_fig
(
fol
+
'
Fig3/spat_recov_coverslip.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Figure 1: Fitting $D_{in}$ and data analysis.
### Figure 1: Fitting $D_{in}$ and data analysis.
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: comparison PGL-3 diffusivity with Louise's viscosity**
**Panel: comparison PGL-3 diffusivity with Louise's viscosity**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
louise
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Louise.csv
'
)
louise
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Louise.csv
'
)
lars
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Lars.csv
'
)
lars
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Lars.csv
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# Calculate rough molecular radius, based on Stokes-Einstein and Louise's
# Calculate rough molecular radius, based on Stokes-Einstein and Louise's
# viscosity data from the Science paper supplement (Fig. S5G), email from Louise:
# viscosity data from the Science paper supplement (Fig. S5G), email from Louise:
# earliest point is 10.4 Pa*s .
# earliest point is 10.4 Pa*s .
# Einstein kinetic theory: D=kB*T/(6*pi*eta*r)
# Einstein kinetic theory: D=kB*T/(6*pi*eta*r)
D
=
lars
.
D
[
lars
.
conc
==
75
].
mean
()
D
=
lars
.
D
[
lars
.
conc
==
75
].
mean
()
eta
=
10.4
eta
=
10.4
kBT
=
4.11
*
10
**-
21
kBT
=
4.11
*
10
**-
21
r
=
kBT
/
(
D
*
6
*
np
.
pi
*
eta
)
r
=
kBT
/
(
D
*
6
*
np
.
pi
*
eta
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
fig
,
ax1
=
plt
.
subplots
()
fig
,
ax1
=
plt
.
subplots
()
ax2
=
ax1
.
twinx
()
ax2
=
ax1
.
twinx
()
plt
.
sca
(
ax1
)
plt
.
sca
(
ax1
)
sns
.
lineplot
(
x
=
"
conc
"
,
y
=
"
D
"
,
data
=
lars
,
color
=
sns
.
color_palette
()[
1
])
sns
.
lineplot
(
x
=
"
conc
"
,
y
=
"
D
"
,
data
=
lars
,
color
=
sns
.
color_palette
()[
1
])
sns
.
scatterplot
(
x
=
"
conc
"
,
y
=
"
D
"
,
data
=
lars
,
color
=
sns
.
color_palette
()[
1
],
alpha
=
0.8
)
sns
.
scatterplot
(
x
=
"
conc
"
,
y
=
"
D
"
,
data
=
lars
,
color
=
sns
.
color_palette
()[
1
],
alpha
=
0.8
)
plt
.
xlabel
(
'
$c_\mathrm{salt}\; [\mathrm{mM}]$
'
)
plt
.
xlabel
(
'
$c_\mathrm{salt}\; [\mathrm{mM}]$
'
)
plt
.
ylabel
(
'
$D_{\mathrm{in}} \;[\mathrm{\mu m^2\cdot s^{-1}}]$
'
,
color
=
red
)
plt
.
ylabel
(
'
$D_{\mathrm{in}} \;[\mathrm{\mu m^2\cdot s^{-1}}]$
'
,
color
=
red
)
plt
.
yticks
([
0
,
0.05
,
0.1
],
rotation
=
90
,
color
=
pa
[
1
])
plt
.
yticks
([
0
,
0.05
,
0.1
],
rotation
=
90
,
color
=
pa
[
1
])
plt
.
ylim
(
0
,
0.1
)
plt
.
ylim
(
0
,
0.1
)
ax1
.
set_zorder
(
1
)
ax1
.
set_zorder
(
1
)
ax1
.
patch
.
set_visible
(
False
)
ax1
.
patch
.
set_visible
(
False
)
plt
.
sca
(
ax2
)
plt
.
sca
(
ax2
)
sns
.
lineplot
(
x
=
"
conc
"
,
y
=
"
vis
"
,
data
=
louise
,
color
=
grey
,
label
=
'
data from Jawerth
\n
et al. 2018
'
)
sns
.
lineplot
(
x
=
"
conc
"
,
y
=
"
vis
"
,
data
=
louise
,
color
=
grey
,
label
=
'
data from Jawerth
\n
et al. 2018
'
)
nice_fig
(
'
c_\mathrm{salt} [\mathrm{mM}]
'
,
'
$\eta^{-1} \;[Pa\cdot s]^{-1}$
'
,
[
40
,
190
],
[
0
,
7.24
],
[
2.3
,
2
])
nice_fig
(
'
c_\mathrm{salt} [\mathrm{mM}]
'
,
'
$\eta^{-1} \;[Pa\cdot s]^{-1}$
'
,
[
40
,
190
],
[
0
,
7.24
],
[
2.3
,
2
])
plt
.
yticks
(
color
=
grey
)
plt
.
yticks
(
color
=
grey
)
plt
.
ylabel
(
'
$\eta^{-1} \;[\mathrm{Pa\cdot s}]^{-1}$
'
,
color
=
grey
)
plt
.
ylabel
(
'
$\eta^{-1} \;[\mathrm{Pa\cdot s}]^{-1}$
'
,
color
=
grey
)
plt
.
legend
(
frameon
=
False
,
fontsize
=
9
)
plt
.
legend
(
frameon
=
False
,
fontsize
=
9
)
save_nice_fig
(
fol
+
'
Fig1/Lars_vs_Louise.pdf
'
)
save_nice_fig
(
fol
+
'
Fig1/Lars_vs_Louise.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Ratio between $D_{out}$ for maximum and minimum salt concentrations for PGL-3**
**Ratio between $D_{out}$ for maximum and minimum salt concentrations for PGL-3**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
lars
[
lars
.
conc
==
180
].
mean
()
/
lars
[
lars
.
conc
==
50
].
mean
()
lars
[
lars
.
conc
==
180
].
mean
()
/
lars
[
lars
.
conc
==
50
].
mean
()
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel:coacervates PLYS/ATP, CMD/PLYS**
m
**Panel:coacervates PLYS/ATP, CMD/PLYS**
m
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
coacervates
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Coacervates.csv
'
)
coacervates
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Coacervates.csv
'
)
sns
.
stripplot
(
data
=
coacervates
,
palette
=
[
green
,
blue
],
jitter
=
0.35
,
**
{
'
marker
'
:
'
.
'
,
'
size
'
:
10
})
sns
.
stripplot
(
data
=
coacervates
,
palette
=
[
green
,
blue
],
jitter
=
0.35
,
**
{
'
marker
'
:
'
.
'
,
'
size
'
:
10
})
ax
=
sns
.
barplot
(
data
=
coacervates
,
palette
=
pa
,
facecolor
=
(
1
,
1
,
1
,
0
),
edgecolor
=
[
pa
[
0
],
pa
[
2
]],
capsize
=
.
15
,
ci
=
'
sd
'
,
errwidth
=
1.5
)
ax
=
sns
.
barplot
(
data
=
coacervates
,
palette
=
pa
,
facecolor
=
(
1
,
1
,
1
,
0
),
edgecolor
=
[
pa
[
0
],
pa
[
2
]],
capsize
=
.
15
,
ci
=
'
sd
'
,
errwidth
=
1.5
)
plt
.
setp
(
ax
.
lines
,
zorder
=
100
)
plt
.
setp
(
ax
.
lines
,
zorder
=
100
)
nice_fig
(
None
,
'
$D_\mathrm{in} \;[\mathrm{\mu m^2\cdot s^{-1}}]$
'
,
[
None
,
None
],
[
0
,
7
],
[
2.3
,
2
])
nice_fig
(
None
,
'
$D_\mathrm{in} \;[\mathrm{\mu m^2\cdot s^{-1}}]$
'
,
[
None
,
None
],
[
0
,
7
],
[
2.3
,
2
])
plt
.
xticks
([
0
,
1
],
(
'
CMD/PLYS
'
,
'
PLYS/ATP
'
),
rotation
=
20
)
plt
.
xticks
([
0
,
1
],
(
'
CMD/PLYS
'
,
'
PLYS/ATP
'
),
rotation
=
20
)
ax
.
get_xticklabels
()[
0
].
set_color
(
green
)
ax
.
get_xticklabels
()[
0
].
set_color
(
green
)
ax
.
get_xticklabels
()[
1
].
set_color
(
blue
)
ax
.
get_xticklabels
()[
1
].
set_color
(
blue
)
plt
.
xlim
(
-
0.7
,
1.7
)
plt
.
xlim
(
-
0.7
,
1.7
)
# save_nice_fig(fol+'Fig1/Coacervates.pdf')
# save_nice_fig(fol+'Fig1/Coacervates.pdf')
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: time course CMD**
**Panel: time course CMD**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
CMD
=
np
.
loadtxt
(
fol
+
'
/Fig1/CMD_timecourse.csv
'
,
delimiter
=
'
,
'
)
CMD
=
np
.
loadtxt
(
fol
+
'
/Fig1/CMD_timecourse.csv
'
,
delimiter
=
'
,
'
)
CMD_fit
=
np
.
loadtxt
(
fol
+
'
/Fig1/CMD_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
CMD_fit
=
np
.
loadtxt
(
fol
+
'
/Fig1/CMD_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
l_sim
=
plt
.
plot
(
CMD
[:,
0
],
CMD
[:,
1
::
2
],
'
.
'
,
c
=
green
)
l_sim
=
plt
.
plot
(
CMD
[:,
0
],
CMD
[:,
1
::
2
],
'
.
'
,
c
=
green
)
l_fit
=
plt
.
plot
(
CMD_fit
[:,
0
],
CMD_fit
[:,
1
::
2
],
'
-
'
,
lw
=
1
,
c
=
'
k
'
)
l_fit
=
plt
.
plot
(
CMD_fit
[:,
0
],
CMD_fit
[:,
1
::
2
],
'
-
'
,
lw
=
1
,
c
=
'
k
'
)
plt
.
plot
(
range
(
0
,
10
),
np
.
ones
(
10
)
*
np
.
min
(
CMD_fit
[:,
1
]),
linestyle
=
'
--
'
,
color
=
grey
,
lw
=
1.5
)
plt
.
plot
(
range
(
0
,
10
),
np
.
ones
(
10
)
*
np
.
min
(
CMD_fit
[:,
1
]),
linestyle
=
'
--
'
,
color
=
grey
,
lw
=
1.5
)
plt
.
legend
([
l_sim
[
0
],
l_fit
[
0
]],
[
'
data
'
,
'
fit
'
],
ncol
=
2
,
loc
=
(
0
,
0.85
),
frameon
=
False
)
plt
.
legend
([
l_sim
[
0
],
l_fit
[
0
]],
[
'
data
'
,
'
fit
'
],
ncol
=
2
,
loc
=
(
0
,
0.85
),
frameon
=
False
)
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity (a.u)
'
,
[
0
,
np
.
max
(
CMD_fit
[:,
0
])],
[
0
,
0.65
],
[
2.3
,
2
])
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity (a.u)
'
,
[
0
,
np
.
max
(
CMD_fit
[:,
0
])],
[
0
,
0.65
],
[
2.3
,
2
])
save_nice_fig
(
fol
+
'
Fig1/CMD_spat_recov.pdf
'
)
save_nice_fig
(
fol
+
'
Fig1/CMD_spat_recov.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: time course PGL-3**
**Panel: time course PGL-3**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
PGL
=
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_timecourse.csv
'
,
delimiter
=
'
,
'
)
PGL
=
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_timecourse.csv
'
,
delimiter
=
'
,
'
)
PGL_fit
=
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
PGL_fit
=
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
l_sim
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
1
::
2
],
'
.
'
,
c
=
red
)
l_sim
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
1
::
2
],
'
.
'
,
c
=
red
)
l_fit
=
plt
.
plot
(
PGL_fit
[:,
0
],
PGL_fit
[:,
1
::
2
],
'
-
'
,
lw
=
1
,
c
=
'
k
'
)
l_fit
=
plt
.
plot
(
PGL_fit
[:,
0
],
PGL_fit
[:,
1
::
2
],
'
-
'
,
lw
=
1
,
c
=
'
k
'
)
plt
.
plot
(
range
(
0
,
10
),
np
.
ones
(
10
)
*
np
.
min
(
PGL_fit
[:,
1
]),
linestyle
=
'
--
'
,
color
=
grey
,
lw
=
1.5
)
plt
.
plot
(
range
(
0
,
10
),
np
.
ones
(
10
)
*
np
.
min
(
PGL_fit
[:,
1
]),
linestyle
=
'
--
'
,
color
=
grey
,
lw
=
1.5
)
plt
.
legend
([
l_sim
[
0
],
l_fit
[
0
]],
[
'
data
'
,
'
fit
'
],
ncol
=
2
,
loc
=
(
0.015
,
0.865
),
frameon
=
False
)
plt
.
legend
([
l_sim
[
0
],
l_fit
[
0
]],
[
'
data
'
,
'
fit
'
],
ncol
=
2
,
loc
=
(
0.015
,
0.865
),
frameon
=
False
)
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity (a.u)
'
,
[
0
,
np
.
max
(
PGL_fit
[:,
0
])],
[
0
,
0.7
],
[
2.3
,
2
])
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity (a.u)
'
,
[
0
,
np
.
max
(
PGL_fit
[:,
0
])],
[
0
,
0.7
],
[
2.3
,
2
])
save_nice_fig
(
fol
+
'
Fig1/PGL_spat_recov.pdf
'
)
save_nice_fig
(
fol
+
'
Fig1/PGL_spat_recov.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
l_sim
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
1
],
'
-
'
,
c
=
red
)
l_sim
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
1
],
'
-
'
,
c
=
red
)
nice_fig
(
''
,
''
,
[
0
,
np
.
max
(
PGL_fit
[:,
0
])],
[
0
,
0.55
],
[
0.7
,
0.7
],
fs
=
5
)
nice_fig
(
''
,
''
,
[
0
,
np
.
max
(
PGL_fit
[:,
0
])],
[
0
,
0.55
],
[
0.7
,
0.7
],
fs
=
5
)
plt
.
yticks
([
0
,
0.5
],
[
''
,
''
])
plt
.
yticks
([
0
,
0.5
],
[
''
,
''
])
plt
.
xticks
([
0
,
3
],
[
''
,
''
])
plt
.
xticks
([
0
,
3
],
[
''
,
''
])
plt
.
gca
().
tick_params
(
direction
=
'
in
'
,
length
=
3
,
width
=
1
)
plt
.
gca
().
tick_params
(
direction
=
'
in
'
,
length
=
3
,
width
=
1
)
save_nice_fig
(
fol
+
'
Fig1/PGL_spat_90.pdf
'
)
save_nice_fig
(
fol
+
'
Fig1/PGL_spat_90.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
l_sim
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
4
],
'
-
'
,
c
=
red
)
l_sim
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
4
],
'
-
'
,
c
=
red
)
nice_fig
(
''
,
''
,
[
0
,
np
.
max
(
PGL_fit
[:,
0
])],
[
0
,
0.55
],
[
0.7
,
0.7
],
fs
=
5
)
nice_fig
(
''
,
''
,
[
0
,
np
.
max
(
PGL_fit
[:,
0
])],
[
0
,
0.55
],
[
0.7
,
0.7
],
fs
=
5
)
plt
.
yticks
([
0
,
0.5
],
[
''
,
''
])
plt
.
yticks
([
0
,
0.5
],
[
''
,
''
])
plt
.
xticks
([
0
,
3
],
[
''
,
''
])
plt
.
xticks
([
0
,
3
],
[
''
,
''
])
plt
.
gca
().
tick_params
(
direction
=
'
in
'
,
length
=
3
,
width
=
1
)
plt
.
gca
().
tick_params
(
direction
=
'
in
'
,
length
=
3
,
width
=
1
)
save_nice_fig
(
fol
+
'
Fig1/PGL_spat_300.pdf
'
)
save_nice_fig
(
fol
+
'
Fig1/PGL_spat_300.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
l_sim
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
7
],
'
-
'
,
c
=
red
)
l_sim
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
7
],
'
-
'
,
c
=
red
)
nice_fig
(
''
,
''
,
[
0
,
np
.
max
(
PGL_fit
[:,
0
])],
[
0
,
0.55
],
[
0.7
,
0.7
],
fs
=
5
)
nice_fig
(
''
,
''
,
[
0
,
np
.
max
(
PGL_fit
[:,
0
])],
[
0
,
0.55
],
[
0.7
,
0.7
],
fs
=
5
)
plt
.
yticks
([
0
,
0.5
],
[
''
,
''
])
plt
.
yticks
([
0
,
0.5
],
[
''
,
''
])
plt
.
xticks
([
0
,
3
],
[
''
,
''
])
plt
.
xticks
([
0
,
3
],
[
''
,
''
])
plt
.
gca
().
tick_params
(
direction
=
'
in
'
,
length
=
3
,
width
=
1
)
plt
.
gca
().
tick_params
(
direction
=
'
in
'
,
length
=
3
,
width
=
1
)
save_nice_fig
(
fol
+
'
Fig1/PGL_spat_510.pdf
'
)
save_nice_fig
(
fol
+
'
Fig1/PGL_spat_510.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: time course total intensity**
**Panel: time course total intensity**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
PGL
=
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_bc.csv
'
,
delimiter
=
'
,
'
)
PGL
=
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_bc.csv
'
,
delimiter
=
'
,
'
)
ATP
=
np
.
loadtxt
(
fol
+
'
/Fig1/ATP_bc.csv
'
,
delimiter
=
'
,
'
)
ATP
=
np
.
loadtxt
(
fol
+
'
/Fig1/ATP_bc.csv
'
,
delimiter
=
'
,
'
)
CMD
=
np
.
loadtxt
(
fol
+
'
/Fig1/CMD_bc.csv
'
,
delimiter
=
'
,
'
)
CMD
=
np
.
loadtxt
(
fol
+
'
/Fig1/CMD_bc.csv
'
,
delimiter
=
'
,
'
)
# fig, ax1 = plt.subplots()
# fig, ax1 = plt.subplots()
# ax2 = ax1.twiny()
# ax2 = ax1.twiny()
# plt.sca(ax1)
# plt.sca(ax1)
nice_fig
(
'
$t/T_\mathrm{max}$
'
,
'
intensity (a.u)
'
,
[
0
,
200
],
[
0
,
0.62
],
[
2.3
,
2
])
nice_fig
(
'
$t/T_\mathrm{max}$
'
,
'
intensity (a.u)
'
,
[
0
,
200
],
[
0
,
0.62
],
[
2.3
,
2
])
# plt.sca(ax2)
# plt.sca(ax2)
# ax2.tick_params(axis="x",direction="in")
# ax2.tick_params(axis="x",direction="in")
plt
.
plot
(
PGL
[::
10
,
0
]
/
np
.
max
(
PGL
[
1
:
-
1
:
2
,
0
]),
PGL
[::
10
,
1
],
'
.
'
,
label
=
'
PGL-3
'
,
c
=
'
#CC406E
'
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
2
)
plt
.
plot
(
PGL
[::
10
,
0
]
/
np
.
max
(
PGL
[
1
:
-
1
:
2
,
0
]),
PGL
[::
10
,
1
],
'
.
'
,
label
=
'
PGL-3
'
,
c
=
'
#CC406E
'
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
2
)
plt
.
plot
(
ATP
[::
1
,
0
]
/
np
.
max
(
ATP
[:,
0
]),
ATP
[::
1
,
1
],
'
.
'
,
label
=
'
PLYS/ATP
'
,
c
=
'
#FF508A
'
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
2
)
plt
.
plot
(
ATP
[::
1
,
0
]
/
np
.
max
(
ATP
[:,
0
]),
ATP
[::
1
,
1
],
'
.
'
,
label
=
'
PLYS/ATP
'
,
c
=
'
#FF508A
'
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
2
)
plt
.
plot
(
CMD
[::
5
,
0
]
/
np
.
max
(
CMD
[:,
0
]),
CMD
[::
5
,
1
],
'
.
'
,
label
=
'
CMD/PLYS
'
,
c
=
'
#7F2845
'
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
2
)
plt
.
plot
(
CMD
[::
5
,
0
]
/
np
.
max
(
CMD
[:,
0
]),
CMD
[::
5
,
1
],
'
.
'
,
label
=
'
CMD/PLYS
'
,
c
=
'
#7F2845
'
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
2
)
plt
.
legend
(
frameon
=
False
,
fontsize
=
9
)
plt
.
legend
(
frameon
=
False
,
fontsize
=
9
)
plt
.
xlim
(
0
,
1
)
plt
.
xlim
(
0
,
1
)
# save_nice_fig(fol+'Fig1/tot_recov.pdf')
# save_nice_fig(fol+'Fig1/tot_recov.pdf')
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
PGL
=
[]
PGL
=
[]
for
i
in
range
(
8
):
for
i
in
range
(
8
):
PGL
.
append
(
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_bc
'
+
str
(
i
+
1
)
+
'
.csv
'
,
delimiter
=
'
,
'
))
PGL
.
append
(
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_bc
'
+
str
(
i
+
1
)
+
'
.csv
'
,
delimiter
=
'
,
'
))
conc
=
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_conc.csv
'
,
delimiter
=
'
,
'
)
conc
=
np
.
loadtxt
(
fol
+
'
/Fig1/PGL_conc.csv
'
,
delimiter
=
'
,
'
)
rads
=
[
25
,
24
,
29
,
26
,
25
,
53
,
33
,
26
]
rads
=
[
25
,
24
,
29
,
26
,
25
,
53
,
33
,
26
]
# PGL = [PGL[i] for i in [0, 1, 2, 3, 4, 5, 7]]
# PGL = [PGL[i] for i in [0, 1, 2, 3, 4, 5, 7]]
# rads =
# rads =
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
nice_fig
(
'
time $t$ [s]
'
,
'
intensity (a.u)
'
,
[
0
,
140
],
[
0
,
0.82
],
[
1
,
2
])
nice_fig
(
'
time $t$ [s]
'
,
'
intensity (a.u)
'
,
[
0
,
140
],
[
0
,
0.82
],
[
1
,
2
])
temp
=
sns
.
color_palette
()
temp
=
sns
.
color_palette
()
sns
.
set_palette
(
sns
.
color_palette
(
"
rocket
"
,
9
))
sns
.
set_palette
(
sns
.
color_palette
(
"
rocket
"
,
9
))
# plt.sca(ax2)
# plt.sca(ax2)
# ax2.tick_params(axis="x",direction="in")
# ax2.tick_params(axis="x",direction="in")
# plt.plot(PGL[::10, 0], PGL[::10,1], '.', label='PGL-3', c='#CC406E', markersize=3, alpha=0.7, lw=2)
# plt.plot(PGL[::10, 0], PGL[::10,1], '.', label='PGL-3', c='#CC406E', markersize=3, alpha=0.7, lw=2)
for
jj
,
i
in
enumerate
(
PGL
):
for
jj
,
i
in
enumerate
(
PGL
):
if
jj
!=
10
:
if
jj
!=
10
:
plt
.
plot
(
i
[::,
0
]
/
(
0.136
*
rads
[
jj
])
**
2
,
i
[::,
1
],
'
-
'
,
color
=
sns
.
color_palette
()[
jj
],
lw
=
1.5
)
plt
.
plot
(
i
[::,
0
]
/
(
0.136
*
rads
[
jj
])
**
2
,
i
[::,
1
],
'
-
'
,
color
=
sns
.
color_palette
()[
jj
],
lw
=
1.5
)
plt
.
legend
([
str
(
x
)[:
-
2
]
for
x
in
conc
],
columnspacing
=
0.2
,
frameon
=
False
,
plt
.
legend
([
str
(
x
)[:
-
2
]
for
x
in
conc
],
columnspacing
=
0.2
,
frameon
=
False
,
fontsize
=
7
,
handletextpad
=
0.4
,
handlelength
=
0.5
,
labelspacing
=
0.1
,
fontsize
=
7
,
handletextpad
=
0.4
,
handlelength
=
0.5
,
labelspacing
=
0.1
,
loc
=
(
0.3
,
0
),
ncol
=
2
)
loc
=
(
0.3
,
0
),
ncol
=
2
)
# plt.xticks([0, 500])
# plt.xticks([0, 500])
save_nice_fig
(
fol
+
'
Fig1/tot_recov_PGL.pdf
'
)
save_nice_fig
(
fol
+
'
Fig1/tot_recov_PGL.pdf
'
)
sns
.
set_palette
(
temp
)
sns
.
set_palette
(
temp
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
nice_fig
(
'
time $t$ [s]
'
,
'
intensity (a.u)
'
,
[
0
,
10
],
[
0
,
0.72
],
[
1
,
2
])
nice_fig
(
'
time $t$ [s]
'
,
'
intensity (a.u)
'
,
[
0
,
10
],
[
0
,
0.72
],
[
1
,
2
])
plt
.
plot
(
ATP
[::
1
,
0
],
ATP
[::
1
,
1
],
'
-
'
,
label
=
'
PLYS/ATP
'
,
c
=
blue
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
1.5
)
plt
.
plot
(
ATP
[::
1
,
0
],
ATP
[::
1
,
1
],
'
-
'
,
label
=
'
PLYS/ATP
'
,
c
=
blue
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
1.5
)
plt
.
plot
(
CMD
[::
5
,
0
],
CMD
[::
5
,
1
],
'
-
'
,
label
=
'
CMD/PLYS
'
,
c
=
green
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
1.5
)
plt
.
plot
(
CMD
[::
5
,
0
],
CMD
[::
5
,
1
],
'
-
'
,
label
=
'
CMD/PLYS
'
,
c
=
green
,
markersize
=
3
,
alpha
=
0.7
,
lw
=
1.5
)
plt
.
legend
(
frameon
=
False
,
fontsize
=
7
,
loc
=
(
0.1
,
0
),
handletextpad
=
0.5
)
plt
.
legend
(
frameon
=
False
,
fontsize
=
7
,
loc
=
(
0.1
,
0
),
handletextpad
=
0.5
)
plt
.
yticks
([]);
plt
.
ylabel
(
''
)
plt
.
yticks
([]);
plt
.
ylabel
(
''
)
save_nice_fig
(
fol
+
'
Fig1/tot_recov_coac.pdf
'
)
save_nice_fig
(
fol
+
'
Fig1/tot_recov_coac.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Figure 2: model sketches
### Figure 2: model sketches
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
model
=
np
.
loadtxt
(
fol
+
'
Fig2/model_timecourse.csv
'
,
delimiter
=
'
,
'
)
model
=
np
.
loadtxt
(
fol
+
'
Fig2/model_timecourse.csv
'
,
delimiter
=
'
,
'
)
l_fit
=
plt
.
plot
(
model
[:,
0
],
model
[:,
1
:],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
model
[:,
0
],
model
[:,
1
:],
'
-
'
,
lw
=
1
,
c
=
green
,
label
=
'
Simulation
'
)
c
=
green
,
label
=
'
Simulation
'
)
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
[
0
,
1
],
[
2.3
,
2
])
[
0
,
1
],
[
2.3
,
2
])
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
c
=
green
,
lw
=
2
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
c
=
green
,
lw
=
2
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
# plt.annotate('$t \longrightarrow \infty$', (0.97, 0.89), (1.3,0.85), fontsize=12)
# plt.annotate('$t \longrightarrow \infty$', (0.97, 0.89), (1.3,0.85), fontsize=12)
# plt.annotate('$t \longrightarrow \infty$', (0.97, 0.89), (1.3,0.85), fontsize=12)
# plt.annotate('$t \longrightarrow \infty$', (0.97, 0.89), (1.3,0.85), fontsize=12)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
save_nice_fig
(
fol
+
'
Fig2/full_time_course.pdf
'
)
save_nice_fig
(
fol
+
'
Fig2/full_time_course.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
l_fit
=
plt
.
plot
(
model
[:,
0
],
model
[:,
2
],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
model
[:,
0
],
model
[:,
2
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
,
label
=
'
Simulation
'
)
c
=
dark_grey
,
label
=
'
Simulation
'
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
[
0
,
1
],
[
2.3
,
2
])
[
0
,
1
],
[
2.3
,
2
])
plt
.
title
(
'
$t=0.22 \;R^2/D_\mathrm{in}$
'
)
plt
.
title
(
'
$t=0.22 \;R^2/D_\mathrm{in}$
'
)
plt
.
text
(
0.75
,
0.18
,
'
$\phi_\mathrm{u}$
'
,
fontsize
=
10
)
plt
.
text
(
0.75
,
0.18
,
'
$\phi_\mathrm{u}$
'
,
fontsize
=
10
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
0
,
model
[:,
2
],
color
=
green
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
0
,
model
[:,
2
],
color
=
green
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
model
[:,
-
1
],
model
[:,
2
],
color
=
grey
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
model
[:,
-
1
],
model
[:,
2
],
color
=
grey
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
save_nice_fig
(
fol
+
'
Fig2/snap_shot.pdf
'
)
save_nice_fig
(
fol
+
'
Fig2/snap_shot.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
l_fit
=
plt
.
plot
(
model
[:,
0
],
model
[:,
1
],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
model
[:,
0
],
model
[:,
1
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
,
label
=
'
Simulation
'
)
c
=
dark_grey
,
label
=
'
Simulation
'
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
[
0
,
1
],
[
2.3
,
2
])
[
0
,
1
],
[
2.3
,
2
])
plt
.
title
(
'
$t=0.22 \;R^2/D_\mathrm{in}$
'
)
plt
.
title
(
'
$t=0.22 \;R^2/D_\mathrm{in}$
'
)
plt
.
text
(
1.45
,
0.02
,
'
$\phi_\mathrm{u}$
'
,
fontsize
=
10
)
plt
.
text
(
1.45
,
0.02
,
'
$\phi_\mathrm{u}$
'
,
fontsize
=
10
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
0
,
model
[:,
-
1
],
color
=
green
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
0
,
model
[:,
-
1
],
color
=
green
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
model
[:,
-
1
],
model
[:,
1
],
color
=
grey
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
model
[:,
-
1
],
model
[:,
1
],
color
=
grey
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
save_nice_fig
(
fol
+
'
Fig2/snap_shot_bleach.pdf
'
)
save_nice_fig
(
fol
+
'
Fig2/snap_shot_bleach.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
l_fit
=
plt
.
plot
(
model
[:,
0
],
model
[:,
-
2
],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
model
[:,
0
],
model
[:,
-
2
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
,
label
=
'
Simulation
'
)
c
=
dark_grey
,
label
=
'
Simulation
'
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
[
0
,
1
],
[
2.3
,
2
])
[
0
,
1
],
[
2.3
,
2
])
plt
.
title
(
'
$t=0.22 \;R^2/D_\mathrm{in}$
'
)
plt
.
title
(
'
$t=0.22 \;R^2/D_\mathrm{in}$
'
)
plt
.
text
(
0.47
,
0.4
,
'
$\phi_\mathrm{u}$
'
,
fontsize
=
10
)
plt
.
text
(
0.47
,
0.4
,
'
$\phi_\mathrm{u}$
'
,
fontsize
=
10
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
0
,
model
[:,
-
2
],
color
=
green
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
0
,
model
[:,
-
2
],
color
=
green
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
model
[:,
-
2
],
model
[:,
-
1
],
color
=
grey
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
model
[:,
-
2
],
model
[:,
-
1
],
color
=
grey
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
save_nice_fig
(
fol
+
'
Fig2/snap_shot_late.pdf
'
)
save_nice_fig
(
fol
+
'
Fig2/snap_shot_late.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# l_fit = plt.plot(model[:, 0], model[:, -2], '-', lw=1,
# l_fit = plt.plot(model[:, 0], model[:, -2], '-', lw=1,
# c=dark_grey, label='Simulation')
# c=dark_grey, label='Simulation')
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
plt
.
plot
(
model
[:,
0
],
model
[:,
-
1
],
'
k
'
,
lw
=
2
)
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
nice_fig
(
'
radial distance $r/R$
'
,
'
volume fraction $\phi_\mathrm{u}$
'
,
[
0
,
2
],
[
0
,
1
],
[
2.3
,
2
])
[
0
,
1
],
[
2.3
,
2
])
plt
.
title
(
'
$t=0.22 \;R^2/D_\mathrm{in}$
'
)
plt
.
title
(
'
$t=0.22 \;R^2/D_\mathrm{in}$
'
)
plt
.
text
(
0.47
,
0.4
,
'
$\phi_\mathrm{u}$
'
,
fontsize
=
10
)
plt
.
text
(
0.47
,
0.4
,
'
$\phi_\mathrm{u}$
'
,
fontsize
=
10
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
0
,
model
[:,
-
1
],
color
=
green
)
plt
.
gca
().
fill_between
(
model
[:,
0
],
0
,
model
[:,
-
1
],
color
=
green
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
plt
.
annotate
(
'
$\phi_\mathrm{tot}$
'
,
(
1
,
0.5
),
(
1.5
,
0.5
),
fontsize
=
10
)
save_nice_fig
(
fol
+
'
Fig2/snap_shot_before.pdf
'
)
save_nice_fig
(
fol
+
'
Fig2/snap_shot_before.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Figure 4: Obtaining info about outside: experiments.
### Figure 4: Obtaining info about outside: experiments.
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: data time course with full model.**
**Panel: data time course with full model.**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
CMD
=
np
.
loadtxt
(
fol
+
'
Fig4/CMD_timecourse.csv
'
,
delimiter
=
'
,
'
)
CMD
=
np
.
loadtxt
(
fol
+
'
Fig4/CMD_timecourse.csv
'
,
delimiter
=
'
,
'
)
CMD_fit
=
np
.
loadtxt
(
fol
+
'
Fig4/CMD_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
CMD_fit
=
np
.
loadtxt
(
fol
+
'
Fig4/CMD_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
l_data
=
plt
.
plot
(
CMD
[:,
0
],
CMD
[:,
1
:],
c
=
green
,
lw
=
2
,
l_data
=
plt
.
plot
(
CMD
[:,
0
],
CMD
[:,
1
:],
c
=
green
,
lw
=
2
,
label
=
'
Experiment
'
)
label
=
'
Experiment
'
)
l_fit
=
plt
.
plot
(
CMD_fit
[:,
0
],
CMD_fit
[:,
1
:],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
CMD_fit
[:,
0
],
CMD_fit
[:,
1
:],
'
-
'
,
lw
=
1
,
c
=
dark_grey
,
label
=
'
Simulation
'
)
c
=
dark_grey
,
label
=
'
Simulation
'
)
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity [a.u]
'
,
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity [a.u]
'
,
[
0
,
2.4
*
np
.
max
(
CMD
[:,
0
])],
[
0
,
0.5
],
[
2.3
,
2
])
[
0
,
2.4
*
np
.
max
(
CMD
[:,
0
])],
[
0
,
0.5
],
[
2.3
,
2
])
plt
.
legend
([
l_data
[
0
],
l_fit
[
0
]],
[
'
CMD/PLYS
'
,
'
Full model
'
],
frameon
=
False
,
plt
.
legend
([
l_data
[
0
],
l_fit
[
0
]],
[
'
CMD/PLYS
'
,
'
Full model
'
],
frameon
=
False
,
fontsize
=
9
,
handletextpad
=
0.4
,
handlelength
=
0.8
,
loc
=
(
0.52
,
0.7
))
fontsize
=
9
,
handletextpad
=
0.4
,
handlelength
=
0.8
,
loc
=
(
0.52
,
0.7
))
save_nice_fig
(
fol
+
'
Fig4/CMD_spat_recov_new.pdf
'
)
save_nice_fig
(
fol
+
'
Fig4/CMD_spat_recov_new.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
PLYS
=
np
.
loadtxt
(
fol
+
'
Fig4/PLYS_timecourse.csv
'
,
delimiter
=
'
,
'
)
PLYS
=
np
.
loadtxt
(
fol
+
'
Fig4/PLYS_timecourse.csv
'
,
delimiter
=
'
,
'
)
PLYS_fit
=
np
.
loadtxt
(
fol
+
'
Fig4/PLYS_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
PLYS_fit
=
np
.
loadtxt
(
fol
+
'
Fig4/PLYS_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
PLYS_t
=
np
.
loadtxt
(
fol
+
'
Fig4/PLYS_fit_time.csv
'
,
delimiter
=
'
,
'
)
PLYS_t
=
np
.
loadtxt
(
fol
+
'
Fig4/PLYS_fit_time.csv
'
,
delimiter
=
'
,
'
)
l_data
=
plt
.
plot
(
PLYS
[:,
0
],
PLYS
[:,
1
::
30
],
c
=
blue
,
lw
=
2
)
l_data
=
plt
.
plot
(
PLYS
[:,
0
],
PLYS
[:,
1
::
30
],
c
=
blue
,
lw
=
2
)
l_fit
=
plt
.
plot
(
PLYS_fit
[:,
0
],
PLYS_fit
[:,
2
::
30
],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
PLYS_fit
[:,
0
],
PLYS_fit
[:,
2
::
30
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
,
label
=
'
Simulation
'
)
# time course
c
=
dark_grey
,
label
=
'
Simulation
'
)
# time course
l_fit
=
plt
.
plot
(
PLYS_fit
[:,
0
],
PLYS_fit
[:,
1
],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
PLYS_fit
[:,
0
],
PLYS_fit
[:,
1
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
)
# Initial condition
c
=
dark_grey
)
# Initial condition
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity [a.u]
'
,
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity [a.u]
'
,
[
0
,
2.4
*
np
.
max
(
PLYS
[:,
0
])],
[
0
,
0.75
],
[
2.3
,
2
])
[
0
,
2.4
*
np
.
max
(
PLYS
[:,
0
])],
[
0
,
0.75
],
[
2.3
,
2
])
plt
.
legend
([
l_data
[
0
],
l_fit
[
0
]],
[
'
ATP/PLYS
'
,
'
Full model
'
],
frameon
=
False
,
plt
.
legend
([
l_data
[
0
],
l_fit
[
0
]],
[
'
ATP/PLYS
'
,
'
Full model
'
],
frameon
=
False
,
fontsize
=
9
,
handletextpad
=
0.4
,
handlelength
=
0.8
,
loc
=
(
0.52
,
0.7
))
fontsize
=
9
,
handletextpad
=
0.4
,
handlelength
=
0.8
,
loc
=
(
0.52
,
0.7
))
# save_nice_fig(fol+'Fig4/PLYS_spat_recov_new.pdf')
# save_nice_fig(fol+'Fig4/PLYS_spat_recov_new.pdf')
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
for
i
in
range
(
np
.
shape
(
PLYS
)[
1
]):
for
i
in
range
(
np
.
shape
(
PLYS
)[
1
]):
l_data
=
plt
.
plot
(
PLYS
[:,
0
],
PLYS
[:,
1
+
i
],
c
=
blue
,
lw
=
2
)
l_data
=
plt
.
plot
(
PLYS
[:,
0
],
PLYS
[:,
1
+
i
],
c
=
blue
,
lw
=
2
)
l_fit
=
plt
.
plot
(
PLYS_fit
[:,
0
],
PLYS_fit
[:,
2
+
i
],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
PLYS_fit
[:,
0
],
PLYS_fit
[:,
2
+
i
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
,
label
=
'
Simulation
'
)
# time course
c
=
dark_grey
,
label
=
'
Simulation
'
)
# time course
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity [a.u]
'
,
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity [a.u]
'
,
[
0
,
2.4
*
np
.
max
(
PLYS
[:,
0
])],
[
0
,
0.9
],
[
2.3
,
2.005
])
[
0
,
2.4
*
np
.
max
(
PLYS
[:,
0
])],
[
0
,
0.9
],
[
2.3
,
2.005
])
plt
.
legend
([
l_data
[
0
],
l_fit
[
0
]],
[
'
ATP/PLYS
'
,
'
Full model
'
],
frameon
=
False
,
plt
.
legend
([
l_data
[
0
],
l_fit
[
0
]],
[
'
ATP/PLYS
'
,
'
Full model
'
],
frameon
=
False
,
fontsize
=
9
,
handletextpad
=
0.4
,
handlelength
=
0.8
,
loc
=
(
0.52
,
0.7
))
fontsize
=
9
,
handletextpad
=
0.4
,
handlelength
=
0.8
,
loc
=
(
0.52
,
0.7
))
t
=
str
(
np
.
round
(
PLYS_t
[
i
+
1
],
2
))
t
=
str
(
np
.
round
(
PLYS_t
[
i
+
1
],
2
))
plt
.
text
(
0.5
,
0.785
,
t
.
ljust
(
4
,
'
0
'
)
+
'
s
'
)
plt
.
text
(
0.5
,
0.785
,
t
.
ljust
(
4
,
'
0
'
)
+
'
s
'
)
save_nice_fig
(
fol
+
'
Fig4/PLYSATP_mov/PLYS_spat_recov_mov_
'
+
str
(
i
)
+
'
.png
'
,
form
=
'
png
'
)
save_nice_fig
(
fol
+
'
Fig4/PLYSATP_mov/PLYS_spat_recov_mov_
'
+
str
(
i
)
+
'
.png
'
,
form
=
'
png
'
)
plt
.
show
();
plt
.
show
();
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
PGL
=
np
.
loadtxt
(
fol
+
'
Fig4/PGL_timecourse.csv
'
,
delimiter
=
'
,
'
)
PGL
=
np
.
loadtxt
(
fol
+
'
Fig4/PGL_timecourse.csv
'
,
delimiter
=
'
,
'
)
PGL_fit
=
np
.
loadtxt
(
fol
+
'
Fig4/PGL_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
PGL_fit
=
np
.
loadtxt
(
fol
+
'
Fig4/PGL_fit_timecourse.csv
'
,
delimiter
=
'
,
'
)
l_data
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
1
::
4
],
c
=
red
,
lw
=
2
,
l_data
=
plt
.
plot
(
PGL
[:,
0
],
PGL
[:,
1
::
4
],
c
=
red
,
lw
=
2
,
label
=
'
Experiment
'
)
label
=
'
Experiment
'
)
l_fit
=
plt
.
plot
(
PGL_fit
[:,
0
],
PGL_fit
[:,
2
::
4
],
'
-
'
,
lw
=
1
,
l_fit
=
plt
.
plot
(
PGL_fit
[:,
0
],
PGL_fit
[:,
2
::
4
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
,
label
=
'
Simulation
'
)
c
=
dark_grey
,
label
=
'
Simulation
'
)
plt
.
plot
(
PGL_fit
[:,
0
],
PGL_fit
[:
1
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
)
plt
.
plot
(
PGL_fit
[:,
0
],
PGL_fit
[:
1
],
'
-
'
,
lw
=
1
,
c
=
dark_grey
)
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity (a.u)
'
,
nice_fig
(
'
radial distance $r$ [$\mathrm{\mu m}$]
'
,
'
intensity (a.u)
'
,
[
0
,
2.5
*
np
.
max
(
PGL
[:,
0
])],
[
0
,
0.65
],
[
2.3
,
2
])
[
0
,
2.5
*
np
.
max
(
PGL
[:,
0
])],
[
0
,
0.65
],
[
2.3
,
2
])
plt
.
legend
([
l_data
[
0
],
l_fit
[
0
]],
[
'
PGL
'
,
'
Full model
'
],
plt
.
legend
([
l_data
[
0
],
l_fit
[
0
]],
[
'
PGL
'
,
'
Full model
'
],
frameon
=
False
,
fontsize
=
9
,
handletextpad
=
0.4
,
frameon
=
False
,
fontsize
=
9
,
handletextpad
=
0.4
,
handlelength
=
0.8
,
loc
=
(
0.54
,
0.7
))
handlelength
=
0.8
,
loc
=
(
0.54
,
0.7
))
save_nice_fig
(
fol
+
'
Fig4/PGL_spat_recov.pdf
'
)
save_nice_fig
(
fol
+
'
Fig4/PGL_spat_recov.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: Experimental Partition coefficient vs $D_{out}$ for CMD**
**Panel: Experimental Partition coefficient vs $D_{out}$ for CMD**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
PLYS
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PLYS.csv
'
)
PLYS
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PLYS.csv
'
)
CMD
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/CMD.csv
'
)
CMD
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/CMD.csv
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
fig
,
ax1
=
plt
.
subplots
()
fig
,
ax1
=
plt
.
subplots
()
plt
.
sca
(
ax1
)
plt
.
sca
(
ax1
)
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
CMD
,
color
=
green
,
ci
=
'
sd
'
)
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
CMD
,
color
=
green
,
ci
=
'
sd
'
)
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PLYS
,
color
=
blue
,
ci
=
'
sd
'
)
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PLYS
,
color
=
blue
,
ci
=
'
sd
'
)
plt
.
plot
(
np
.
logspace
(
1
,
3
,
10
),
1.5
*
np
.
logspace
(
1
,
3
,
10
),
'
--
'
,
c
=
'
grey
'
,
alpha
=
0.5
)
plt
.
plot
(
np
.
logspace
(
1
,
3
,
10
),
1.5
*
np
.
logspace
(
1
,
3
,
10
),
'
--
'
,
c
=
'
grey
'
,
alpha
=
0.5
)
# plt.plot(np.logspace(0, 2, 10), 0.2*np.logspace(0, 2, 10)**2, '--', c='grey')
# plt.plot(np.logspace(0, 2, 10), 0.2*np.logspace(0, 2, 10)**2, '--', c='grey')
ax1
.
set_yscale
(
'
log
'
)
ax1
.
set_yscale
(
'
log
'
)
ax1
.
set_xscale
(
'
log
'
)
ax1
.
set_xscale
(
'
log
'
)
nice_fig
(
'
Partition coefficient $P$
'
,
'
$D_\mathrm{out} \;[\mathrm{\mu m^2s^{-1}}]$
'
,
nice_fig
(
'
Partition coefficient $P$
'
,
'
$D_\mathrm{out} \;[\mathrm{\mu m^2s^{-1}}]$
'
,
[
1
,
340
],
[
0.08
,
450
],
[
2.3
,
2
])
[
1
,
340
],
[
0.08
,
450
],
[
2.3
,
2
])
plt
.
legend
([
'
CMD/PLYS
'
,
'
ATP/PLYS
'
],
frameon
=
False
,
fontsize
=
9
,
loc
=
(
0.44
,
0.05
))
plt
.
legend
([
'
CMD/PLYS
'
,
'
ATP/PLYS
'
],
frameon
=
False
,
fontsize
=
9
,
loc
=
(
0.44
,
0.05
))
plt
.
text
(
1.1
,
2
,
'
$D_\mathrm{in, P/A}$
'
,
color
=
blue
)
plt
.
text
(
1.1
,
2
,
'
$D_\mathrm{in, P/A}$
'
,
color
=
blue
)
plt
.
text
(
1.1
,
7
,
'
$D_\mathrm{in, C/P}$
'
,
color
=
green
)
plt
.
text
(
1.1
,
7
,
'
$D_\mathrm{in, C/P}$
'
,
color
=
green
)
# plt.plot([1, 9], [1.7, 1.7], '--', color=blue)
# plt.plot([1, 9], [1.7, 1.7], '--', color=blue)
# plt.plot([1, 12], [6, 6], '--', color=green)
# plt.plot([1, 12], [6, 6], '--', color=green)
plt
.
xticks
([
1
,
10
,
100
]);
plt
.
xticks
([
1
,
10
,
100
]);
plt
.
yticks
([
0.1
,
1
,
10
,
100
]);
plt
.
yticks
([
0.1
,
1
,
10
,
100
]);
save_nice_fig
(
fol
+
'
Fig4/PLYS_CMD.pdf
'
)
save_nice_fig
(
fol
+
'
Fig4/PLYS_CMD.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: Experimental Partition coefficient vs $D_out$ for PGL-3**
**Panel: Experimental Partition coefficient vs $D_out$ for PGL-3**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
PGL_50
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_50.csv
'
)
PGL_50
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_50.csv
'
)
PGL_60
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_60.csv
'
)
PGL_60
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_60.csv
'
)
PGL_75
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_75.csv
'
)
PGL_75
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_75.csv
'
)
PGL_90
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_90.csv
'
)
PGL_90
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_90.csv
'
)
PGL_100
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_100.csv
'
)
PGL_100
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_100.csv
'
)
PGL_120
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_120.csv
'
)
PGL_120
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_120.csv
'
)
PGL_150
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_150.csv
'
)
PGL_150
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_150.csv
'
)
PGL_180
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_180.csv
'
)
PGL_180
=
pd
.
read_csv
(
'
/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_180.csv
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
fig
,
ax1
=
plt
.
subplots
()
fig
,
ax1
=
plt
.
subplots
()
plt
.
sca
(
ax1
)
plt
.
sca
(
ax1
)
temp
=
sns
.
color_palette
()
temp
=
sns
.
color_palette
()
sns
.
set_palette
(
sns
.
color_palette
(
"
rocket
"
,
9
))
sns
.
set_palette
(
sns
.
color_palette
(
"
rocket
"
,
9
))
l50
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_50
,
l50
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_50
,
color
=
sns
.
color_palette
()[
1
],
ci
=
None
)
color
=
sns
.
color_palette
()[
1
],
ci
=
None
)
l60
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_60
,
l60
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_60
,
color
=
sns
.
color_palette
()[
2
],
ci
=
None
)
color
=
sns
.
color_palette
()[
2
],
ci
=
None
)
l75
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_75
,
l75
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_75
,
color
=
sns
.
color_palette
()[
3
],
ci
=
None
)
color
=
sns
.
color_palette
()[
3
],
ci
=
None
)
l90
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_90
,
l90
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_90
,
color
=
sns
.
color_palette
()[
4
],
ci
=
None
)
color
=
sns
.
color_palette
()[
4
],
ci
=
None
)
l100
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_100
,
l100
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_100
,
color
=
sns
.
color_palette
()[
5
],
ci
=
None
)
color
=
sns
.
color_palette
()[
5
],
ci
=
None
)
leg1
=
plt
.
legend
([
'
50 mM
'
,
'
60 mM
'
,
'
75 mM
'
,
'
90 mM
'
,
'
100 mM
'
],
leg1
=
plt
.
legend
([
'
50 mM
'
,
'
60 mM
'
,
'
75 mM
'
,
'
90 mM
'
,
'
100 mM
'
],
labelspacing
=
0.3
,
loc
=
(
0.63
,
0.0
),
labelspacing
=
0.3
,
loc
=
(
0.63
,
0.0
),
handletextpad
=
0.4
,
handlelength
=
0.5
,
frameon
=
0
)
handletextpad
=
0.4
,
handlelength
=
0.5
,
frameon
=
0
)
l120
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_120
,
l120
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_120
,
color
=
sns
.
color_palette
()[
6
],
ci
=
None
)
color
=
sns
.
color_palette
()[
6
],
ci
=
None
)
l150
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_150
,
l150
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_150
,
color
=
sns
.
color_palette
()[
7
],
ci
=
None
)
color
=
sns
.
color_palette
()[
7
],
ci
=
None
)
l180
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_180
,
l180
=
sns
.
lineplot
(
x
=
"
P
"
,
y
=
"
D_out
"
,
data
=
PGL_180
,
color
=
sns
.
color_palette
()[
8
],
ci
=
None
)
color
=
sns
.
color_palette
()[
8
],
ci
=
None
)
plt
.
plot
(
np
.
logspace
(
0
,
4
,
10
),
0.07
*
np
.
logspace
(
0
,
4
,
10
),
plt
.
plot
(
np
.
logspace
(
0
,
4
,
10
),
0.07
*
np
.
logspace
(
0
,
4
,
10
),
'
--
'
,
c
=
'
grey
'
,
alpha
=
0.5
)
'
--
'
,
c
=
'
grey
'
,
alpha
=
0.5
)
# plt.plot(np.logspace(2, 3, 10), 30*np.ones(10), '--', c='m', lw=2)
# plt.plot(np.logspace(2, 3, 10), 30*np.ones(10), '--', c='m', lw=2)
ax1
.
set_yscale
(
'
log
'
)
ax1
.
set_yscale
(
'
log
'
)
ax1
.
set_xscale
(
'
log
'
)
ax1
.
set_xscale
(
'
log
'
)
nice_fig
(
'
Partition coefficient $P$
'
,
nice_fig
(
'
Partition coefficient $P$
'
,
'
$D_\mathrm{out} \;[\mathrm{\mu m^2 s^{-1}}]$
'
,
'
$D_\mathrm{out} \;[\mathrm{\mu m^2 s^{-1}}]$
'
,
[
1
,
10000
],
[
0.0003
,
600
],
[
2.3
,
2
])
[
1
,
10000
],
[
0.0003
,
600
],
[
2.3
,
2
])
plt
.
xticks
([
1
,
10
,
100
,
1000
,
10000
]);
plt
.
xticks
([
1
,
10
,
100
,
1000
,
10000
]);
plt
.
legend
(
loc
=
1
)
plt
.
legend
(
loc
=
1
)
plt
.
legend
([
'
50 mM
'
,
'
60 mM
'
,
'
75 mM
'
,
'
90 mM
'
,
'
100 mM
'
,
plt
.
legend
([
'
50 mM
'
,
'
60 mM
'
,
'
75 mM
'
,
'
90 mM
'
,
'
100 mM
'
,
'
120 mM
'
,
'
150 mM
'
,
'
180 mM
'
],
labelspacing
=
0.3
,
'
120 mM
'
,
'
150 mM
'
,
'
180 mM
'
],
labelspacing
=
0.3
,
loc
=
(
0
,
0.66
),
handletextpad
=
0.4
,
handlelength
=
0.5
,
frameon
=
0
)
loc
=
(
0
,
0.66
),
handletextpad
=
0.4
,
handlelength
=
0.5
,
frameon
=
0
)
plt
.
gca
().
add_artist
(
leg1
)
plt
.
gca
().
add_artist
(
leg1
)
# plt.plot([700, 10000], [30, 30], color=(1, 0, 0))
# plt.plot([700, 10000], [30, 30], color=(1, 0, 0))
# plt.plot([700, 10000], [70, 70], color=(1, 0, 0))
# plt.plot([700, 10000], [70, 70], color=(1, 0, 0))
# plt.plot([700, 700], [30, 70], color=(1, 0, 0))
# plt.plot([700, 700], [30, 70], color=(1, 0, 0))
# plt.plot([10000, 10000], [30, 70], color=(1, 0, 0))
# plt.plot([10000, 10000], [30, 70], color=(1, 0, 0))
# save_nice_fig(fol+'Fig4/PGL-3.pdf')
# save_nice_fig(fol+'Fig4/PGL-3.pdf')
sns
.
set_palette
(
temp
)
sns
.
set_palette
(
temp
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
le_egfp
=
239
le_egfp
=
239
le_pgl3
=
693
le_pgl3
=
693
ratio
=
le_egfp
/
(
le_egfp
+
le_pgl3
)
ratio
=
le_egfp
/
(
le_egfp
+
le_pgl3
)
D_factor
=
np
.
sqrt
(
ratio
)
D_factor
=
np
.
sqrt
(
ratio
)
D_GFPw
=
87
# micron^2/s, Arrio-Dupont et al. 2000 BJ, GFP in water
D_GFPw
=
87
# micron^2/s, Arrio-Dupont et al. 2000 BJ, GFP in water
D
=
D_GFPw
*
np
.
sqrt
(
ratio
)
D
=
D_GFPw
*
np
.
sqrt
(
ratio
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
P_anatol
=
np
.
array
([
686
,
533
,
590
,
474
])
/
np
.
array
([
1.6
,
5.5
,
7.5
,
19.3
])
P_anatol
=
np
.
array
([
686
,
533
,
590
,
474
])
/
np
.
array
([
1.6
,
5.5
,
7.5
,
19.3
])
salt_anatol
=
np
.
array
([
100
,
150
,
175
,
200
])
salt_anatol
=
np
.
array
([
100
,
150
,
175
,
200
])
P
=
PGL_50
[
'
P
'
]
P
=
PGL_50
[
'
P
'
]
def
i_P
(
df
,
Pa
):
def
i_P
(
df
,
Pa
):
return
interp1d
(
np
.
array
(
df
.
groupby
(
'
P
'
).
mean
()).
flatten
(),
return
interp1d
(
np
.
array
(
df
.
groupby
(
'
P
'
).
mean
()).
flatten
(),
P
.
unique
(),
bounds_error
=
False
,
P
.
unique
(),
bounds_error
=
False
,
fill_value
=
"
extrapolate
"
)(
Pa
)
fill_value
=
"
extrapolate
"
)(
Pa
)
Ps_15
=
[
i_P
(
PGL
,
2
)
for
PGL
in
[
PGL_50
,
PGL_60
,
PGL_75
,
PGL_90
,
Ps_15
=
[
i_P
(
PGL
,
2
)
for
PGL
in
[
PGL_50
,
PGL_60
,
PGL_75
,
PGL_90
,
PGL_100
,
PGL_120
,
PGL_150
,
PGL_180
]]
PGL_100
,
PGL_120
,
PGL_150
,
PGL_180
]]
Ps_30
=
[
i_P
(
PGL
,
2
)
for
PGL
in
[
PGL_50
,
PGL_60
,
PGL_75
,
PGL_90
,
Ps_30
=
[
i_P
(
PGL
,
2
)
for
PGL
in
[
PGL_50
,
PGL_60
,
PGL_75
,
PGL_90
,
PGL_100
,
PGL_120
,
PGL_150
,
PGL_180
]]
PGL_100
,
PGL_120
,
PGL_150
,
PGL_180
]]
salts
=
[
50
,
60
,
75
,
90
,
100
,
120
,
150
,
180
]
salts
=
[
50
,
60
,
75
,
90
,
100
,
120
,
150
,
180
]
nice_fig
(
'
$c_\mathrm{salt} \; [\mathrm{mM}]$
'
,
'
Partition coefficient $P$
'
,
nice_fig
(
'
$c_\mathrm{salt} \; [\mathrm{mM}]$
'
,
'
Partition coefficient $P$
'
,
[
50
,
180
],
[
50
,
2000
],
[
2.3
,
2
])
[
50
,
180
],
[
50
,
2000
],
[
2.3
,
2
])
plt
.
plot
(
salts
,
Ps_15
,
color
=
red
)
plt
.
plot
(
salts
,
Ps_15
,
color
=
red
)
plt
.
plot
(
salts
,
Ps_30
,
color
=
red
)
plt
.
plot
(
salts
,
Ps_30
,
color
=
red
)
plt
.
plot
(
salt_anatol
,
P_anatol
)
plt
.
plot
(
salt_anatol
,
P_anatol
)
plt
.
gca
().
fill_between
(
salts
,
Ps_15
,
Ps_30
,
color
=
red
,
alpha
=
0.2
)
plt
.
gca
().
fill_between
(
salts
,
Ps_15
,
Ps_30
,
color
=
red
,
alpha
=
0.2
)
plt
.
yticks
(
rotation
=
45
)
plt
.
yticks
(
rotation
=
45
)
plt
.
yscale
(
'
log
'
)
plt
.
yscale
(
'
log
'
)
# plt.text(110, 6200, '$D_\mathrm{out}=30\;\mathrm{\mu m^2/s}$',
# plt.text(110, 6200, '$D_\mathrm{out}=30\;\mathrm{\mu m^2/s}$',
# color=red, size=8)
# color=red, size=8)
# plt.text(54, 700, '$D_\mathrm{out}=15\;\mathrm{\mu m^2/s}$',
# plt.text(54, 700, '$D_\mathrm{out}=15\;\mathrm{\mu m^2/s}$',
# color=red, size=8)
# color=red, size=8)
# save_nice_fig(fol+'Fig4/PGL-3_part.pdf')
# save_nice_fig(fol+'Fig4/PGL-3_part.pdf')
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Figure 5: Obtaining info about outside: theory.
### Figure 5: Obtaining info about outside: theory.
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: Partition coefficient vs. $D_{out}$, showcasing four different simulation start cases.**
**Panel: Partition coefficient vs. $D_{out}$, showcasing four different simulation start cases.**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
sns
.
set_palette
(
sns
.
color_palette
(
"
Set2
"
))
sns
.
set_palette
(
sns
.
color_palette
(
"
Set2
"
))
P_Do
=
np
.
loadtxt
(
fol
+
'
/Fig4/Part_vs_Do_220121.csv
'
,
delimiter
=
'
,
'
)
P_Do
=
np
.
loadtxt
(
fol
+
'
/Fig4/Part_vs_Do_220121.csv
'
,
delimiter
=
'
,
'
)
sns
.
set_style
(
"
white
"
)
sns
.
set_style
(
"
white
"
)
sns
.
set_palette
([
sns
.
color_palette
()[
i
]
for
i
in
[
3
,
0
,
1
,
2
]])
sns
.
set_palette
([
sns
.
color_palette
()[
i
]
for
i
in
[
3
,
0
,
1
,
2
]])
P
=
[
5
,
150
,
5
,
150
]
P
=
[
5
,
150
,
5
,
150
]
D_o
=
[
0.1
,
0.1
,
1
,
1
]
D_o
=
[
0.1
,
0.1
,
1
,
1
]
plt
.
gca
().
set_prop_cycle
(
None
)
plt
.
gca
().
set_prop_cycle
(
None
)
nice_fig
(
'
Partition coefficient $P$
'
,
'
$D_\mathrm{out}$ [$\mathrm{\mu m^2/s}$]
'
,
[
0.9
,
320
],
[
0.000001
,
340
],
[
2.3
,
2
])
nice_fig
(
'
Partition coefficient $P$
'
,
'
$D_\mathrm{out}$ [$\mathrm{\mu m^2/s}$]
'
,
[
0.9
,
320
],
[
0.000001
,
340
],
[
2.3
,
2
])
lines
=
plt
.
loglog
(
P_Do
[
0
,
:],
P_Do
[
1
:,
:].
transpose
())
lines
=
plt
.
loglog
(
P_Do
[
0
,
:],
P_Do
[
1
:,
:].
transpose
())
plt
.
plot
(
P_Do
[
0
,
:],
P_Do
[
0
,
:],
'
--
'
,
c
=
'
grey
'
)
plt
.
plot
(
P_Do
[
0
,
:],
P_Do
[
0
,
:],
'
--
'
,
c
=
'
grey
'
)
plt
.
legend
([
lines
[
2
],
lines
[
0
],
lines
[
3
],
lines
[
1
]],
plt
.
legend
([
lines
[
2
],
lines
[
0
],
lines
[
3
],
lines
[
1
]],
[
'
0.2
'
,
'
0.02
'
,
'
0.0067
'
,
'
0.00067
'
],
ncol
=
2
,
frameon
=
False
,
[
'
0.2
'
,
'
0.02
'
,
'
0.0067
'
,
'
0.00067
'
],
ncol
=
2
,
frameon
=
False
,
title
=
r
'
$D_\mathrm{out}$/P [$\mathrm{\mu m^2/s}$]:
'
,
columnspacing
=
0.5
,
labelspacing
=
0.3
,
title
=
r
'
$D_\mathrm{out}$/P [$\mathrm{\mu m^2/s}$]:
'
,
columnspacing
=
0.5
,
labelspacing
=
0.3
,
loc
=
(
0.4
,
0
),
handletextpad
=
0.4
,
handlelength
=
0.5
)
loc
=
(
0.4
,
0
),
handletextpad
=
0.4
,
handlelength
=
0.5
)
plt
.
gca
().
set_prop_cycle
(
None
)
plt
.
gca
().
set_prop_cycle
(
None
)
plt
.
plot
(
P
[
0
],
D_o
[
0
],
'
d
'
)
plt
.
plot
(
P
[
0
],
D_o
[
0
],
'
d
'
)
plt
.
plot
(
P
[
1
],
D_o
[
1
],
'
d
'
)
plt
.
plot
(
P
[
1
],
D_o
[
1
],
'
d
'
)
plt
.
plot
(
P
[
2
],
D_o
[
2
],
'
d
'
)
plt
.
plot
(
P
[
2
],
D_o
[
2
],
'
d
'
)
plt
.
plot
(
P
[
3
],
D_o
[
3
],
'
d
'
)
plt
.
plot
(
P
[
3
],
D_o
[
3
],
'
d
'
)
plt
.
annotate
(
'
$D_{out}$/P = 1 $\mathrm{\mu m^2/s}$
'
,
[
1
,
40
],
c
=
'
grey
'
)
plt
.
annotate
(
'
$D_{out}$/P = 1 $\mathrm{\mu m^2/s}$
'
,
[
1
,
40
],
c
=
'
grey
'
)
plt
.
xticks
([
1
,
10
,
100
]);
plt
.
xticks
([
1
,
10
,
100
]);
save_nice_fig
(
fol
+
'
Fig4/D_vs_P.pdf
'
)
save_nice_fig
(
fol
+
'
Fig4/D_vs_P.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: Cost function**
**Panel: Cost function**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
P_Cost
=
np
.
loadtxt
(
fol
+
'
/Fig4/Part_vs_Cost_220121.csv
'
,
delimiter
=
'
,
'
)
P_Cost
=
np
.
loadtxt
(
fol
+
'
/Fig4/Part_vs_Cost_220121.csv
'
,
delimiter
=
'
,
'
)
nice_fig
(
'
Partition coefficient $P$
'
,
'
$Cost_\mathrm{min} (P)$ [a.u.]
'
,
[
0.9
,
320
],
[
0.000000001
,
0.01
],
[
2.3
,
2
])
nice_fig
(
'
Partition coefficient $P$
'
,
'
$Cost_\mathrm{min} (P)$ [a.u.]
'
,
[
0.9
,
320
],
[
0.000000001
,
0.01
],
[
2.3
,
2
])
lines
=
plt
.
loglog
(
P_Cost
[
0
,
:],
P_Cost
[
1
:,
:].
transpose
())
lines
=
plt
.
loglog
(
P_Cost
[
0
,
:],
P_Cost
[
1
:,
:].
transpose
())
# plt.legend([lines[2], lines[0], lines[3], lines[1]],
# plt.legend([lines[2], lines[0], lines[3], lines[1]],
# ['0.2', '0.02', '0.0067', '0.00067'], ncol=2, frameon=False,
# ['0.2', '0.02', '0.0067', '0.00067'], ncol=2, frameon=False,
# title=r'$D_\mathrm{out}$/P set to:', columnspacing=0.5, labelspacing=0.3,
# title=r'$D_\mathrm{out}$/P set to:', columnspacing=0.5, labelspacing=0.3,
# loc=(0.081, 0), handletextpad=0.4, handlelength=0.5)
# loc=(0.081, 0), handletextpad=0.4, handlelength=0.5)
plt
.
xticks
([
1
,
10
,
100
]);
plt
.
xticks
([
1
,
10
,
100
]);
save_nice_fig
(
fol
+
'
Fig4/D_vs_Cost.pdf
'
)
save_nice_fig
(
fol
+
'
Fig4/D_vs_Cost.pdf
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
P_Cost
=
np
.
loadtxt
(
fol
+
'
/Fig4/Part_vs_Cost_220121.csv
'
,
delimiter
=
'
,
'
)
P_Cost
=
np
.
loadtxt
(
fol
+
'
/Fig4/Part_vs_Cost_220121.csv
'
,
delimiter
=
'
,
'
)
nice_fig
(
'
Partition coefficient $P$
'
,
'
$Cost_\mathrm{min} (P)$ [a.u.]
'
,
[
0.9
,
100
],
[
0
,
2
],
[
2.3
,
2
])
nice_fig
(
'
Partition coefficient $P$
'
,
'
$Cost_\mathrm{min} (P)$ [a.u.]
'
,
[
0.9
,
100
],
[
0
,
2
],
[
2.3
,
2
])
lines
=
plt
.
plot
(
P_Cost
[
0
],
P_Cost
[
1
:].
transpose
()
/
[
x
[
0
]
for
x
in
P_Cost
[
1
:]])
lines
=
plt
.
plot
(
P_Cost
[
0
],
P_Cost
[
1
:].
transpose
()
/
[
x
[
0
]
for
x
in
P_Cost
[
1
:]])
plt
.
gca
().
set_xscale
(
'
log
'
)
plt
.
gca
().
set_xscale
(
'
log
'
)
plt
.
plot
([
150
,
150
],
[
0
,
1
],
'
--
'
,
lw
=
2
,
c
=
grey
)
plt
.
plot
([
150
,
150
],
[
0
,
1
],
'
--
'
,
lw
=
2
,
c
=
grey
)
save_nice_fig
(
fol
+
'
Fig4/D_vs_Cost_single.pdf
'
)
save_nice_fig
(
fol
+
'
Fig4/D_vs_Cost_single.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: Valley in parameter space**
**Panel: Valley in parameter space**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
con
=
np
.
loadtxt
(
fol
+
'
Fig4/Valley_220121.csv
'
,
delimiter
=
'
,
'
)
con
=
np
.
loadtxt
(
fol
+
'
Fig4/Valley_220121.csv
'
,
delimiter
=
'
,
'
)
levels
=
MaxNLocator
(
nbins
=
100
).
tick_values
(
np
.
log10
(
con
[:,
2
:].
min
()),
np
.
log10
(
con
[:,
2
:].
max
()))
levels
=
MaxNLocator
(
nbins
=
100
).
tick_values
(
np
.
log10
(
con
[:,
2
:].
min
()),
np
.
log10
(
con
[:,
2
:].
max
()))
nice_fig
(
'
Partition coefficient $P$
'
,
'
$D_\mathrm{out} \;[\mathrm{\mu m^2 s^{-1}}]$
'
,
[
1
,
3
],
[
-
2
,
1
],
[
2.3
,
2
])
nice_fig
(
'
Partition coefficient $P$
'
,
'
$D_\mathrm{out} \;[\mathrm{\mu m^2 s^{-1}}]$
'
,
[
1
,
3
],
[
-
2
,
1
],
[
2.3
,
2
])
CS
=
plt
.
contourf
(
np
.
log10
(
con
[:,
0
]),
np
.
log10
(
con
[:,
1
]),
np
.
log10
(
con
[:,
2
:]),
levels
=
levels
,
cmap
=
cm
.
coolwarm
)
CS
=
plt
.
contourf
(
np
.
log10
(
con
[:,
0
]),
np
.
log10
(
con
[:,
1
]),
np
.
log10
(
con
[:,
2
:]),
levels
=
levels
,
cmap
=
cm
.
coolwarm
)
plt
.
plot
(
np
.
log10
(
150
),
np
.
log10
(
10
**-
1
),
'
d
'
,
c
=
sns
.
color_palette
()[
1
],
label
=
'
Initial Simul.
'
,
markersize
=
6
)
plt
.
plot
(
np
.
log10
(
150
),
np
.
log10
(
10
**-
1
),
'
d
'
,
c
=
sns
.
color_palette
()[
1
],
label
=
'
Initial Simul.
'
,
markersize
=
6
)
le
=
plt
.
legend
(
loc
=
(
0
,
0.83
),
frameon
=
False
,
handletextpad
=
0.4
)
le
=
plt
.
legend
(
loc
=
(
0
,
0.83
),
frameon
=
False
,
handletextpad
=
0.4
)
# plt.plot(np.log10(P_Do[0, :]), np.log10(P_Do[2, :].transpose()), '--', c=green, lw = 1)
# plt.plot(np.log10(P_Do[0, :]), np.log10(P_Do[2, :].transpose()), '--', c=green, lw = 1)
le
.
get_texts
()[
0
].
set_color
(
'
white
'
)
le
.
get_texts
()[
0
].
set_color
(
'
white
'
)
plt
.
xticks
([
1
,
2
,
3
],
[
'
$10^1$
'
,
'
$10^2$
'
,
'
$10^3$
'
])
plt
.
xticks
([
1
,
2
,
3
],
[
'
$10^1$
'
,
'
$10^2$
'
,
'
$10^3$
'
])
plt
.
yticks
([
-
2
,
-
1
,
0
,
1
],
[
'
$10^{-2}$
'
,
'
$10^{-1}$
'
,
'
$10^0$
'
,
'
$10^1$
'
])
plt
.
yticks
([
-
2
,
-
1
,
0
,
1
],
[
'
$10^{-2}$
'
,
'
$10^{-1}$
'
,
'
$10^0$
'
,
'
$10^1$
'
])
plt
.
tick_params
(
'
x
'
,
pad
=
5
)
plt
.
tick_params
(
'
x
'
,
pad
=
5
)
fig1
=
plt
.
gcf
()
fig1
=
plt
.
gcf
()
clb
=
fig1
.
colorbar
(
CS
,
ticks
=
[
0
,
-
2
,
-
4
,
-
6
])
clb
=
fig1
.
colorbar
(
CS
,
ticks
=
[
0
,
-
2
,
-
4
,
-
6
])
clb
.
ax
.
set_title
(
'
Cost
'
)
clb
.
ax
.
set_title
(
'
Cost
'
)
save_nice_fig
(
fol
+
'
Fig4/Sim_D_out_P.pdf
'
)
save_nice_fig
(
fol
+
'
Fig4/Sim_D_out_P.pdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
**Panel: Zoom in for valley in parameter space**
**Panel: Zoom in for valley in parameter space**
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# levels = MaxNLocator(nbins=15).tick_values(np.log10(con[:, 2:].min()), np.log10(con[:, 2:].max()))
# levels = MaxNLocator(nbins=15).tick_values(np.log10(con[:, 2:].min()), np.log10(con[:, 2:].max()))
nice_fig
(
'
Partition coefficient $P$
'
,
''
,
[
1.9
,
2.4
],
[
-
1.5
,
-
0.5
],
[
2.3
,
2
])
nice_fig
(
'
Partition coefficient $P$
'
,
''
,
[
1.9
,
2.4
],
[
-
1.5
,
-
0.5
],
[
2.3
,
2
])
CS
=
plt
.
contourf
(
np
.
log10
(
con
[
16
:
-
27
,
0
]),
np
.
log10
(
con
[
16
:
-
27
,
1
]),
CS
=
plt
.
contourf
(
np
.
log10
(
con
[
16
:
-
27
,
0
]),
np
.
log10
(
con
[
16
:
-
27
,
1
]),
np
.
log10
(
con
[
16
:
-
27
,
2
+
16
:
-
27
]),
levels
=
levels
,
np
.
log10
(
con
[
16
:
-
27
,
2
+
16
:
-
27
]),
levels
=
levels
,
cmap
=
cm
.
coolwarm
,
vmax
=-
1.5
)
cmap
=
cm
.
coolwarm
,
vmax
=-
1.5
)
plt
.
plot
(
np
.
log10
(
150
),
np
.
log10
(
10
**-
1
),
'
d
'
,
c
=
sns
.
color_palette
()[
1
],
label
=
'
Initial Simul.
'
,
markersize
=
6
)
plt
.
plot
(
np
.
log10
(
150
),
np
.
log10
(
10
**-
1
),
'
d
'
,
c
=
sns
.
color_palette
()[
1
],
label
=
'
Initial Simul.
'
,
markersize
=
6
)
le
=
plt
.
legend
(
loc
=
(
0
,
0.83
),
frameon
=
False
,
handletextpad
=
0.4
)
le
=
plt
.
legend
(
loc
=
(
0
,
0.83
),
frameon
=
False
,
handletextpad
=
0.4
)
le
.
get_texts
()[
0
].
set_color
(
'
white
'
)
le
.
get_texts
()[
0
].
set_color
(
'
white
'
)
plt
.
xticks
([
2
,
2.25
],
[
'
$10^2$
'
,
'
$10^{2.25}$
'
])
plt
.
xticks
([
2
,
2.25
],
[
'
$10^2$
'
,
'
$10^{2.25}$
'
])
plt
.
yticks
([
-
1.5
,
-
1
,
-
0.5
],
[
'
$10^{-1.5}$
'
,
'
$10^{-1}$
'
,
'
$10^{-0.5}$
'
])
plt
.
yticks
([
-
1.5
,
-
1
,
-
0.5
],
[
'
$10^{-1.5}$
'
,
'
$10^{-1}$
'
,
'
$10^{-0.5}$
'
])
plt
.
tick_params
(
'
x
'
,
pad
=
5
)
plt
.
tick_params
(
'
x
'
,
pad
=
5
)
fig1
=
plt
.
gcf
()
fig1
=
plt
.
gcf
()
clb
=
fig1
.
colorbar
(
CS
,
ticks
=
[
-
2
,
-
4
,
-
6
])
clb
=
fig1
.
colorbar
(
CS
,
ticks
=
[
-
2
,
-
4
,
-
6
])
clb
.
ax
.
set_title
(
'
Cost
'
)
clb
.
ax
.
set_title
(
'
Cost
'
)
# save_nice_fig(fol+'Fig4/Sim_D_out_P_inset.pdf')
# save_nice_fig(fol+'Fig4/Sim_D_out_P_inset.pdf')
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
con_fine
=
np
.
loadtxt
(
fol
+
'
Fig4/Valley_fine_210121.csv
'
,
delimiter
=
'
,
'
)
con_fine
=
np
.
loadtxt
(
fol
+
'
Fig4/Valley_fine_210121.csv
'
,
delimiter
=
'
,
'
)
# nice_fig('Partition coefficient $P$', '', [2.172, 2.1795], [-1.005,-0.9955], [2.3,2])
# nice_fig('Partition coefficient $P$', '', [2.172, 2.1795], [-1.005,-0.9955], [2.3,2])
P
=
np
.
log10
(
con_fine
[:,
0
])
P
=
np
.
log10
(
con_fine
[:,
0
])
D_o
=
np
.
log10
(
con_fine
[:,
1
])
D_o
=
np
.
log10
(
con_fine
[:,
1
])
fval
=
np
.
log10
(
con_fine
[:,
2
])
fval
=
np
.
log10
(
con_fine
[:,
2
])
# levels = np.linspace(-fval.max(), -fval.min(), 100)
# levels = np.linspace(-fval.max(), -fval.min(), 100)
levels
=
MaxNLocator
(
nbins
=
50
).
tick_values
(
fval
.
min
(),
fval
.
max
())
levels
=
MaxNLocator
(
nbins
=
50
).
tick_values
(
fval
.
min
(),
fval
.
max
())
plt
.
plot
(
np
.
log10
(
150
),
np
.
log10
(
10
**-
1
),
'
d
'
,
c
=
sns
.
color_palette
()[
1
],
label
=
'
Initial Simul.
'
,
markersize
=
6
)
plt
.
plot
(
np
.
log10
(
150
),
np
.
log10
(
10
**-
1
),
'
d
'
,
c
=
sns
.
color_palette
()[
1
],
label
=
'
Initial Simul.
'
,
markersize
=
6
)
cs
=
plt
.
tricontourf
(
P
,
D_o
,
-
fval
,
levels
=
np
.
flip
(
-
levels
))
cs
=
plt
.
tricontourf
(
P
,
D_o
,
-
fval
,
levels
=
np
.
flip
(
-
levels
))
plt
.
yticks
([
-
1.005
,
-
1
,
-
0.996
],
[
'
$10^{-1.005}$
'
,
'
$10^{-1}$
'
,
'
$10^{-0.996}$
'
],
rotation
=
30
)
plt
.
yticks
([
-
1.005
,
-
1
,
-
0.996
],
[
'
$10^{-1.005}$
'
,
'
$10^{-1}$
'
,
'
$10^{-0.996}$
'
],
rotation
=
30
)
plt
.
xticks
([
2.173
,
2.178
],
[
'
$10^{2.173}$
'
,
'
$10^{2.178}$
'
])
plt
.
xticks
([
2.173
,
2.178
],
[
'
$10^{2.173}$
'
,
'
$10^{2.178}$
'
])
plt
.
tick_params
(
axis
=
'
x
'
,
direction
=
'
out
'
,
which
=
'
minor
'
,
length
=
10
)
plt
.
tick_params
(
axis
=
'
x
'
,
direction
=
'
out
'
,
which
=
'
minor
'
,
length
=
10
)
fig1
=
plt
.
gcf
()
fig1
=
plt
.
gcf
()
clb
=
fig1
.
colorbar
(
cs
,
ticks
=
[
5
,
7
,
9
,
11
])
clb
=
fig1
.
colorbar
(
cs
,
ticks
=
[
5
,
7
,
9
,
11
])
clb
.
ax
.
set_title
(
'
Cost
'
)
clb
.
ax
.
set_title
(
'
Cost
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
```
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment