Skip to content
Snippets Groups Projects
Commit 5d0ec8c1 authored by Lars Hubatsch's avatar Lars Hubatsch
Browse files

Parameter changes to make cool movie. Now again 2D.

parent 367f8eb5
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id: tags:
``` python
# Extended Standard Cahn-Hilliard Example to Binary Flory Huggins as discussed on 28/11/2019
# Example can be found at https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/cahn-hilliard/demo_cahn-hilliard.py.rst#rst-header-id1
# Runs with fenics 2019.01
# The resulting .pvd file can be opened using default settings in ParaView
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
import random
from dolfin import *
# Class representing the intial conditions
class InitialConditions(UserExpression):
def __init__(self, **kwargs):
random.seed(2 + MPI.rank(MPI.comm_world))
super().__init__(**kwargs)
def eval(self, values, x):
if x[0] > 0.5:
if (x[0] > 0.48) & (x[0] < 0.52) & (x[1] > 0.48) & (x[1] < 0.52):
# values[0] = 0.63 + 0.02*(0.5 - random.random())
values[0] = 0.6
else:
values[0] = 0.35
values[1] = 0.0
# values[0] = 0.63 + 0.02*(0.5 - random.random())
values[1] = 0.0
def value_shape(self):
return (2,)
# Class for interfacing with the Newton solver
class CahnHilliardEquation(NonlinearProblem):
def __init__(self, a, L):
NonlinearProblem.__init__(self)
self.L = L
self.a = a
def F(self, b, x):
assemble(self.L, tensor=b)
def J(self, A, x):
assemble(self.a, tensor=A)
# Model parameters
lmbda = 1.0e-02 # surface parameter
dt = 5.0e-03 # time step
dt = 5.0e-02 # time step
theta = 0.5 # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicolson
# Form compiler options
parameters["form_compiler"]["optimize"] = True
parameters["form_compiler"]["cpp_optimize"] = True
# Create mesh and build function space
mesh = UnitSquareMesh.create(96, 1, CellType.Type.quadrilateral)
mesh = UnitSquareMesh.create(96, 96, CellType.Type.quadrilateral)
P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
ME = FunctionSpace(mesh, P1*P1)
# Define trial and test functions
du = TrialFunction(ME)
q, v = TestFunctions(ME)
# Define functions
u = Function(ME) # current solution
u0 = Function(ME) # solution from previous converged step
# Split mixed functions
dc, dmu = split(du)
c, mu = split(u)
c0, mu0 = split(u0)
# Create intial conditions and interpolate
u_init = InitialConditions(degree=1)
u.interpolate(u_init)
u0.interpolate(u_init)
# Compute the chemical potential df/dc
c = variable(c)
# f = 100*c**2*(1-c)**2
# dfdc = diff(f, c)
X = 2.5
dfdc = ln(c/(1-c))+(1-2*X*c)
# mu_(n+theta)
mu_mid = (1.0-theta)*mu0 + theta*mu
# Weak statement of the equations
L0 = c*q*dx - c0*q*dx + dt*c*(1-c)*dot(grad(mu_mid), grad(q))*dx
L1 = mu*v*dx - (ln(c/(1-c))+(1-2*X*c))*v*dx - lmbda*dot(grad(c), grad(v))*dx
L = L0 + L1
# Compute directional derivative about u in the direction of du (Jacobian)
a = derivative(L, u, du)
# Create nonlinear problem and Newton solver
problem = CahnHilliardEquation(a, L)
solver = NewtonSolver()
solver.parameters["linear_solver"] = "lu"
solver.parameters["convergence_criterion"] = "incremental"
solver.parameters["relative_tolerance"] = 1e-6
# Output file
file = File("output.pvd", "compressed")
# Step in time
t = 0.0
T = 3000*dt
T = 100*dt
while (t < T):
file << (u.split()[0], t)
t += dt
u0.vector()[:] = u.vector()
solver.solve(problem, u.vector())
file << (u.split()[0], t)
```
%% Cell type:code id: tags:
``` python
def tanh_fit(x, a, b, c, d):
return np.tanh((x-a)/b)*c+d
xdata = np.linspace(0, 96, 97)
popt, pcov = curve_fit(tanh_fit, xdata, u.compute_vertex_values()[0:97])
plt.plot(xdata, u.compute_vertex_values()[0:97])
a, b, c, d = popt
plt.plot(xdata, tanh_fit(xdata, a, b, c, d))# np.tanh((xdata-52)/12.4)*0.36+0.5
```
%% Cell type:code id: tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment