Skip to content
Snippets Groups Projects
Commit 6400ae35 authored by Lars Hubatsch's avatar Lars Hubatsch
Browse files

Adding first version of integrals, new formatting.

parent b7aa877b
No related branches found
No related tags found
No related merge requests found
......@@ -4,32 +4,32 @@ b = @(chi, nu) nu^(1/3)*sqrt(chi/(chi-2));
e = @(chi) sqrt(3/8*(chi-2));
t = [0, 0.1, 1, 9.9];
%%
T = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3), 0.16,...
0.2, 300, 7], t, 0.5);
T = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3),...
0.16, 0.2, 300, 7], t, 0.5);
T.solve_tern_frap()
%%
T1 = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3), 0.16,...
0.2, 300, 7], t, 1);
T1 = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3),...
0.16, 0.2, 300, 7], t, 1);
T1.solve_tern_frap()
%%
T2 = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3), 0.16,...
0.2, 300, 7], t, 2);
T2 = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3),...
0.16, 0.2, 300, 7], t, 2);
T2.solve_tern_frap()
%%
tic
T3 = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3), 0.16,...
0.2, 300, 7], t, 5);
T3 = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3),...
0.16,0.2, 300, 7], t, 5);
T3.solve_tern_frap()
toc
%%
T4 = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3), 0.16,...
0.2, 300, 7], t, 10);
T4 = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3),...
0.16, 0.2, 300, 7], t, 10);
T4.solve_tern_frap()
%% different x0
x0 = [-0.05, -0.03, -0.01, 0.01, 0.03, 0.05];
for i = 1:length(x0)
T(i) = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3), 0.16,...
0.2, 300, 6+x0(i)], t, 1);
T(i) = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3),...
0.16, 0.2, 300, 6+x0(i)], t, 1);
T(i).solve_tern_frap()
end
%%
......@@ -47,8 +47,8 @@ ga = (T(j).u0-T(j).e)/ (T(j).u0+T(j).e);
p_out = @(D_p, D_m, ga, x0, x, t) 1./(2*sqrt(D_p*pi*t))*...
(exp(-(x+x0).^2./(4*D_p*t))*(ga*sqrt(D_p)-sqrt(D_m))./...
(ga*sqrt(D_p)+sqrt(D_m))+exp(-(x-x0).^2./(4*D_p*t)))*2;
p_in = @(D_p, D_m, ga, x0, x, t) 1./(sqrt(pi*t)*(sqrt(D_m)+ga*sqrt(D_p)))*...
exp(-(x-x0*sqrt(D_m/D_p)).^2/(4*D_m*t))*2;
p_in = @(D_p, D_m, ga, x0, x, t) 1./(sqrt(pi*t)*(sqrt(D_m)+...
ga*sqrt(D_p)))*exp(-(x-x0*sqrt(D_m/D_p)).^2/(4*D_m*t))*2;
x_left = linspace(-4, 0, 1000);
x_right = linspace(0, 4, 1000);
%% Plot with full ternary model
......@@ -79,4 +79,44 @@ for i = 1:4
pks_min = findpeaks(-T4.sol(i, :));
pks_max = findpeaks(T4.sol(i, :));
pks_max(1)/pks_min(1)
end
%% Solve integrals
% different x0
clear T;
x0 = 0.01:0.01:10;
tic
parfor i = 1:length(x0)
b = @(chi, nu) nu^(1/3)*sqrt(chi/(chi-2));
e = @(chi) sqrt(3/8*(chi-2));
t = [0, 0.1, 1, 9.9];
% disp([-6, b(7.7/3, 10^-6), 0.5, e(7.7/3), 0.16,...
% 0.2, 300, 6+x0(i)]);
T{i} = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, e(7.7/3), ...
0.16, 0.2, 300, 6+x0(i)], t, 1);
T{i}.solve_tern_frap()
end
toc
%%
ls = 0.01:0.01:2;
for i = 1:length(ls)
q(i) = int_prob(ls(i), T, x0+6);
end
%%
figure; hold on;
plot(ls, p);
plot(ls, q);
%% distribution for x0 can be taken from phi_tot (steady state)
function p = int_prob(l, T, x0)
delta_x0 = diff(x0);
p = 0;
for i = 1:length(delta_x0)
x = (x0(i)+x0(i+1))/2;
p_i = @(j, x) interp1(T{j}.x, T{j}.sol(2, :), x-l);
p2 = (p_i(i, x)+p_i(i+1, x))/2;
p = p + delta_x0(i)*...
T{1}.phi_tot(x, T{1}.a, T{1}.b, T{1}.e, T{1}.u0) * p2;
if x0(i)-l < 0; break; end
end
end
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment