Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Frap Theory
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
hubatsch
Frap Theory
Commits
7c35122f
Commit
7c35122f
authored
4 years ago
by
Lars Hubatsch
Browse files
Options
Downloads
Patches
Plain Diff
Phi tot symmetric. still not working.
parent
8dda0930
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FloryHugg_DiffUnbleached.ipynb
+29
-21
29 additions, 21 deletions
FloryHugg_DiffUnbleached.ipynb
with
29 additions
and
21 deletions
FloryHugg_DiffUnbleached.ipynb
+
29
−
21
View file @
7c35122f
...
...
@@ -16,7 +16,7 @@
"# domain = ms.Sphere(df.Point(0, 0, 0), 1.0)\n",
"# mesh = ms.generate_mesh(domain, 50)\n",
"mesh = df.UnitIntervalMesh(10000)\n",
"dt = 0.000
00
1\n",
"dt = 0.0001\n",
"\n",
"F = df.FunctionSpace(mesh, 'CG', 1)"
]
...
...
@@ -40,21 +40,21 @@
"# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c/Ga0))) * df.dx\n",
" \n",
"# # Weak form radial symmetry:\n",
"# form = ((df.inner((c-c0)/dt, tc*X[0]*X[0]) +\n",
"# df.inner(df.grad(c), df.grad((1-c_tot)/Ga0*tc*X[0]*X[0]))) -\n",
"# df.inner(df.grad(c_tot), df.grad((1-c_tot)/Ga0/c_tot*c*tc*X[0]*X[0]))-\n",
"# tc*df.inner(df.grad(c), df.grad((1-c_tot)/Ga0*X[0]*X[0]))+\n",
"# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c/Ga0*X[0]*X[0]))-\n",
"# (1-c_tot)/Ga0*2*X[0]*c.dx(0)*tc+\n",
"# (1-c_tot)/Ga0/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx\n",
" # Weak form radial symmetry:\n",
" form = ((df.inner((c-c0)/dt, tc*X[0]*X[0]) +\n",
" df.inner(df.grad(c), df.grad((1-c_tot+a*c_tot*c_tot)*tc*X[0]*X[0]))) -\n",
" df.inner(df.grad(c_tot), df.grad((1-c_tot+a*c_tot*c_tot)/c_tot*c*tc*X[0]*X[0]))-\n",
" tc*df.inner(df.grad(c), df.grad((1-c_tot+a*c_tot*c_tot)*X[0]*X[0]))+\n",
" tc*df.inner(df.grad(c_tot), df.grad((1-c_tot+a*c_tot*c_tot)/c_tot*c*X[0]*X[0]))-\n",
" (1-c_tot+a*c_tot*c_tot)*2*X[0]*c.dx(0)*tc+\n",
" (1-c_tot+a*c_tot*c_tot)/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx\n",
" df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*tc*X[0]*X[0]))) -\n",
" df.inner(df.grad(c_tot), df.grad((1-c_tot)*Ga0/c_tot*c*tc*X[0]*X[0]))-\n",
" tc*df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*X[0]*X[0]))+\n",
" tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c*Ga0*X[0]*X[0]))-\n",
" (1-c_tot)*Ga0*2*X[0]*c.dx(0)*tc+\n",
" (1-c_tot)*Ga0/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx\n",
" # Weak form radial symmetry:\n",
"# form = ((df.inner((c-c0)/dt, tc*X[0]*X[0]) +\n",
"# df.inner(df.grad(c), df.grad((1-c_tot+a*c_tot*c_tot)*tc*X[0]*X[0]))) -\n",
"# df.inner(df.grad(c_tot), df.grad((1-c_tot+a*c_tot*c_tot)/c_tot*c*tc*X[0]*X[0]))-\n",
"# tc*df.inner(df.grad(c), df.grad((1-c_tot+a*c_tot*c_tot)*X[0]*X[0]))+\n",
"# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot+a*c_tot*c_tot)/c_tot*c*X[0]*X[0]))-\n",
"# (1-c_tot+a*c_tot*c_tot)*2*X[0]*c.dx(0)*tc+\n",
"# (1-c_tot+a*c_tot*c_tot)/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx\n",
" \n",
" t = 0\n",
" # Solve in time\n",
...
...
@@ -119,9 +119,11 @@
"# c0_1 = calc_sim(c0_1, c_tot_1, Ga0_1)\n",
"# c0_9 = calc_sim(c0_9, c_tot_9, Ga0_9)\n",
"\n",
"# c0_1 = calc_sim(c0_1, c_tot1, 0)\n",
"# c0_2 = calc_sim(c0_2, c_tot2, a)\n",
"\n",
"c0_1 = calc_sim(c0_1, c
_tot1, 0
)\n",
"c0_2 = calc_sim(c0_2, c
_tot2, a
)"
"c0_1 = calc_sim(c0_1, c
t_1, g_1
)\n",
"c0_2 = calc_sim(c0_2, c
t_2, g_2
)"
]
},
{
...
...
@@ -131,9 +133,9 @@
"outputs": [],
"source": [
"# 1D:\n",
"plt.plot(np.linspace(0, 1, 10000), [c0_1([x]) for x in np.linspace(0, 1, 10000)])\n",
"plt.plot(np.linspace(0, 1, 10000), [
1.31*
c0_1([x]) for x in np.linspace(0, 1, 10000)])\n",
"plt.plot(np.linspace(0, 1, 10000), [c0_2([x]) for x in np.linspace(0, 1, 10000)])\n",
"
#
plt.xlim(0.06, 0.125)\n",
"plt.xlim(0.06, 0.125)\n",
"# plt.ylim(0, 0.3)\n",
"# 3D:\n",
"# plt.plot(np.linspace(0, 0.5, 1000), [c0([x, 0, 0]) for x in np.linspace(0, 0.5, 1000)])"
...
...
@@ -177,14 +179,16 @@
"ct_2 = df.Function(F)\n",
"c0_1 = df.Function(F)\n",
"c0_2 = df.Function(F)\n",
"g_1 = df.Function(F)\n",
"g_2 = df.Function(F)\n",
"\n",
"ct_1.interpolate(df.Expression(p_tot(p1_i, p1_o), degree=1))\n",
"ct_2.interpolate(df.Expression(p_tot(p2_i, p2_o), degree=1))\n",
"P1 = c_tot1(0)/c_tot1(1)\n",
"P2 = c_tot2(0)/c_tot2(1)\n",
"\n",
"g_
2 = df.Function(F
)\n",
"g_2.interpolate(df.Expression(p_tot(p
2)
))\n",
"g_
1.interpolate(df.Expression('1', degree=1)
)\n",
"g_2.interpolate(df.Expression(p_tot(p
1_o/p2_o, p1_i/p2_i), degree=1
))\n",
"D_out1 = 1-c_tot1(1)\n",
"a = (P2*D_out1/P1-1+p2_o)/p2_o**2\n",
"\n",
...
...
@@ -199,6 +203,10 @@
"outputs": [],
"source": [
"plt.plot(np.linspace(0, 1, 1000), [ct_1([x]) for x in np.linspace(0, 1, 1000)])\n",
"plt.plot(np.linspace(0, 1, 1000), [ct_2([x]) for x in np.linspace(0, 1, 1000)])\n",
"plt.show()\n",
"\n",
"plt.plot(np.linspace(0, 1, 1000), [g_2([x]) for x in np.linspace(0, 1, 1000)])\n",
"# plt.plot(np.linspace(0, 1, 1000), [(1-c_tot1([x])-a*c_tot1([x])**2) for x in np.linspace(0, 1, 1000)])"
]
},
...
...
%% Cell type:code id: tags:
```
python
import
dolfin
as
df
import
matplotlib.pyplot
as
plt
import
mshr
as
ms
import
numpy
as
np
import
time
df
.
set_log_level
(
40
)
# domain = ms.Sphere(df.Point(0, 0, 0), 1.0)
# mesh = ms.generate_mesh(domain, 50)
mesh
=
df
.
UnitIntervalMesh
(
10000
)
dt
=
0.000
00
1
dt
=
0.0001
F
=
df
.
FunctionSpace
(
mesh
,
'
CG
'
,
1
)
```
%% Cell type:code id: tags:
```
python
def
calc_sim
(
c0
,
c_tot
,
Ga0
):
tc
=
df
.
TestFunction
(
F
)
c
=
df
.
Function
(
F
)
X
=
df
.
SpatialCoordinate
(
mesh
)
# X.interpolate(df.Expression('x[0]', degree=1))
# Weak form 1D:
# form = ((df.inner((c-c0)/dt, tc) +
# df.inner(df.grad(c), df.grad((1-c_tot)/Ga0*tc))) -
# df.inner(df.grad(c_tot), df.grad((1-c_tot)/Ga0/c_tot*c*tc))-
# tc*df.inner(df.grad(c), df.grad((1-c_tot)/Ga0))+
# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c/Ga0))) * df.dx
# # Weak form radial symmetry:
# form = ((df.inner((c-c0)/dt, tc*X[0]*X[0]) +
# df.inner(df.grad(c), df.grad((1-c_tot)/Ga0*tc*X[0]*X[0]))) -
# df.inner(df.grad(c_tot), df.grad((1-c_tot)/Ga0/c_tot*c*tc*X[0]*X[0]))-
# tc*df.inner(df.grad(c), df.grad((1-c_tot)/Ga0*X[0]*X[0]))+
# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c/Ga0*X[0]*X[0]))-
# (1-c_tot)/Ga0*2*X[0]*c.dx(0)*tc+
# (1-c_tot)/Ga0/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx
# Weak form radial symmetry:
form
=
((
df
.
inner
((
c
-
c0
)
/
dt
,
tc
*
X
[
0
]
*
X
[
0
])
+
df
.
inner
(
df
.
grad
(
c
),
df
.
grad
((
1
-
c_tot
+
a
*
c_tot
*
c_tot
)
*
tc
*
X
[
0
]
*
X
[
0
])))
-
df
.
inner
(
df
.
grad
(
c_tot
),
df
.
grad
((
1
-
c_tot
+
a
*
c_tot
*
c_tot
)
/
c_tot
*
c
*
tc
*
X
[
0
]
*
X
[
0
]))
-
tc
*
df
.
inner
(
df
.
grad
(
c
),
df
.
grad
((
1
-
c_tot
+
a
*
c_tot
*
c_tot
)
*
X
[
0
]
*
X
[
0
]))
+
tc
*
df
.
inner
(
df
.
grad
(
c_tot
),
df
.
grad
((
1
-
c_tot
+
a
*
c_tot
*
c_tot
)
/
c_tot
*
c
*
X
[
0
]
*
X
[
0
]))
-
(
1
-
c_tot
+
a
*
c_tot
*
c_tot
)
*
2
*
X
[
0
]
*
c
.
dx
(
0
)
*
tc
+
(
1
-
c_tot
+
a
*
c_tot
*
c_tot
)
/
c_tot
*
c
*
2
*
X
[
0
]
*
c_tot
.
dx
(
0
)
*
tc
)
*
df
.
dx
df
.
inner
(
df
.
grad
(
c
),
df
.
grad
((
1
-
c_tot
)
*
Ga0
*
tc
*
X
[
0
]
*
X
[
0
])))
-
df
.
inner
(
df
.
grad
(
c_tot
),
df
.
grad
((
1
-
c_tot
)
*
Ga0
/
c_tot
*
c
*
tc
*
X
[
0
]
*
X
[
0
]))
-
tc
*
df
.
inner
(
df
.
grad
(
c
),
df
.
grad
((
1
-
c_tot
)
*
Ga0
*
X
[
0
]
*
X
[
0
]))
+
tc
*
df
.
inner
(
df
.
grad
(
c_tot
),
df
.
grad
((
1
-
c_tot
)
/
c_tot
*
c
*
Ga0
*
X
[
0
]
*
X
[
0
]))
-
(
1
-
c_tot
)
*
Ga0
*
2
*
X
[
0
]
*
c
.
dx
(
0
)
*
tc
+
(
1
-
c_tot
)
*
Ga0
/
c_tot
*
c
*
2
*
X
[
0
]
*
c_tot
.
dx
(
0
)
*
tc
)
*
df
.
dx
# Weak form radial symmetry:
# form = ((df.inner((c-c0)/dt, tc*X[0]*X[0]) +
# df.inner(df.grad(c), df.grad((1-c_tot+a*c_tot*c_tot)*tc*X[0]*X[0]))) -
# df.inner(df.grad(c_tot), df.grad((1-c_tot+a*c_tot*c_tot)/c_tot*c*tc*X[0]*X[0]))-
# tc*df.inner(df.grad(c), df.grad((1-c_tot+a*c_tot*c_tot)*X[0]*X[0]))+
# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot+a*c_tot*c_tot)/c_tot*c*X[0]*X[0]))-
# (1-c_tot+a*c_tot*c_tot)*2*X[0]*c.dx(0)*tc+
# (1-c_tot+a*c_tot*c_tot)/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx
t
=
0
# Solve in time
ti
=
time
.
time
()
for
i
in
range
(
100
):
# print(time.time() - ti)
df
.
solve
(
form
==
0
,
c
)
df
.
assign
(
c0
,
c
)
t
+=
dt
print
(
time
.
time
()
-
ti
)
return
c0
```
%% Cell type:code id: tags:
```
python
# Interpolate c_tot and initial conditions
# 3D:
# c_tot.interpolate(df.Expression('0.4*tanh(-350*(sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))-0.2))+0.5', degree=1))
# c0.interpolate(df.Expression(('(x[0]<0.5) && sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))<0.2 ? 0 :'
# '0.4*tanh(-350*(sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))-0.2)) + 0.5'),
# degree=1))
# 1D, no partitioning
c0_1
=
df
.
Function
(
F
)
c_tot_1
=
df
.
Function
(
F
)
Ga0_1
=
df
.
Function
(
F
)
# c_tot_1.interpolate(df.Expression('0*tanh(350000*(x[0]-0.01))+0.9', degree=1))
c_tot_1
.
interpolate
(
df
.
Expression
(
'
0.9
'
,
degree
=
1
))
c0_1
.
interpolate
(
df
.
Expression
((
'
x[0]<0.1 ? 0 :
'
'
0*tanh(350000*(x[0]-0.01))+0.9
'
),
degree
=
1
))
# Ga0_1.interpolate(df.Expression('4.*(tanh(350000*(x[0]-0.01))+1)+1', degree=1))
Ga0_1
.
interpolate
(
df
.
Expression
(
'
x[0]<0.1 ? 1:9
'
,
degree
=
1
))
# 1D, high partitioning
c0_9
=
df
.
Function
(
F
)
c_tot_9
=
df
.
Function
(
F
)
Ga0_9
=
df
.
Function
(
F
)
# c_tot_9.interpolate(df.Expression('0.4*tanh(-350000*(x[0]-0.01))+0.5', degree=1))
c_tot_9
.
interpolate
(
df
.
Expression
(
'
x[0]<0.1 ? 0.9 :0.1
'
,
degree
=
1
))
# c0_9.interpolate(df.Expression(('x[0]<0.01 ? 0 :'
# '0.4*tanh(-350000*(x[0]-0.01))+0.5'),
# degree=1))
c0_9
.
interpolate
(
df
.
Expression
(
'
x[0]<0.1 ? 0 :0.1
'
,
degree
=
1
))
# Ga0_9.interpolate(df.Expression('0*(tanh(-350000*(x[0]-0.01))+1)+1', degree=1))
Ga0_9
.
interpolate
(
df
.
Expression
(
'
1
'
,
degree
=
1
))
```
%% Cell type:code id: tags:
```
python
# c0_1 = calc_sim(c0_1, c_tot_1, Ga0_1)
# c0_9 = calc_sim(c0_9, c_tot_9, Ga0_9)
# c0_1 = calc_sim(c0_1, c_tot1, 0)
# c0_2 = calc_sim(c0_2, c_tot2, a)
c0_1
=
calc_sim
(
c0_1
,
c
_tot1
,
0
)
c0_2
=
calc_sim
(
c0_2
,
c
_tot2
,
a
)
c0_1
=
calc_sim
(
c0_1
,
c
t_1
,
g_1
)
c0_2
=
calc_sim
(
c0_2
,
c
t_2
,
g_2
)
```
%% Cell type:code id: tags:
```
python
# 1D:
plt
.
plot
(
np
.
linspace
(
0
,
1
,
10000
),
[
c0_1
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
10000
)])
plt
.
plot
(
np
.
linspace
(
0
,
1
,
10000
),
[
1.31
*
c0_1
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
10000
)])
plt
.
plot
(
np
.
linspace
(
0
,
1
,
10000
),
[
c0_2
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
10000
)])
#
plt.xlim(0.06, 0.125)
plt
.
xlim
(
0.06
,
0.125
)
# plt.ylim(0, 0.3)
# 3D:
# plt.plot(np.linspace(0, 0.5, 1000), [c0([x, 0, 0]) for x in np.linspace(0, 0.5, 1000)])
```
%% Cell type:code id: tags:
```
python
plt
.
plot
(
np
.
linspace
(
0
,
1
,
2000
),
[
Ga0_1
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
2000
)])
plt
.
xlim
(
0
,
0.1
)
```
%% Cell type:code id: tags:
```
python
plt
.
plot
(
np
.
linspace
(
0
,
1
,
1000
),
[
c_tot_9
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
1000
)])
```
%% Cell type:code id: tags:
```
python
p1_i
=
0.9
p1_o
=
0.1
p2_i
=
0.8
p2_o
=
0.2
a1
=
0
def
p_tot
(
p_i
,
p_o
):
return
str
(
p_i
-
p_o
)
+
'
*(-0.5*tanh(350000*(x[0]-0.1))+0.5)+
'
+
str
(
p_o
)
ct_1
=
df
.
Function
(
F
)
ct_2
=
df
.
Function
(
F
)
c0_1
=
df
.
Function
(
F
)
c0_2
=
df
.
Function
(
F
)
g_1
=
df
.
Function
(
F
)
g_2
=
df
.
Function
(
F
)
ct_1
.
interpolate
(
df
.
Expression
(
p_tot
(
p1_i
,
p1_o
),
degree
=
1
))
ct_2
.
interpolate
(
df
.
Expression
(
p_tot
(
p2_i
,
p2_o
),
degree
=
1
))
P1
=
c_tot1
(
0
)
/
c_tot1
(
1
)
P2
=
c_tot2
(
0
)
/
c_tot2
(
1
)
g_
2
=
df
.
Function
(
F
)
g_2
.
interpolate
(
df
.
Expression
(
p_tot
(
p
2
)
))
g_
1
.
interpolate
(
df
.
Expression
(
'
1
'
,
degree
=
1
)
)
g_2
.
interpolate
(
df
.
Expression
(
p_tot
(
p
1_o
/
p2_o
,
p1_i
/
p2_i
),
degree
=
1
))
D_out1
=
1
-
c_tot1
(
1
)
a
=
(
P2
*
D_out1
/
P1
-
1
+
p2_o
)
/
p2_o
**
2
c0_1
.
interpolate
(
df
.
Expression
(
'
x[0]<0.1 ? 0 :
'
+
p_tot
(
p1_i
,
p1_o
),
degree
=
1
))
c0_2
.
interpolate
(
df
.
Expression
(
'
x[0]<0.1 ? 0 :
'
+
p_tot
(
p2_i
,
p2_o
),
degree
=
1
))
```
%% Cell type:code id: tags:
```
python
plt
.
plot
(
np
.
linspace
(
0
,
1
,
1000
),
[
ct_1
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
1000
)])
plt
.
plot
(
np
.
linspace
(
0
,
1
,
1000
),
[
ct_2
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
1000
)])
plt
.
show
()
plt
.
plot
(
np
.
linspace
(
0
,
1
,
1000
),
[
g_2
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
1000
)])
# plt.plot(np.linspace(0, 1, 1000), [(1-c_tot1([x])-a*c_tot1([x])**2) for x in np.linspace(0, 1, 1000)])
```
%% Cell type:markdown id: tags:
## Radial diffusion equation
%% Cell type:code id: tags:
```
python
mesh
=
df
.
UnitIntervalMesh
(
1000
)
dt
=
0.001
F
=
df
.
FunctionSpace
(
mesh
,
'
CG
'
,
1
)
c0
=
df
.
Function
(
F
)
c0
.
interpolate
(
df
.
Expression
(
'
x[0]<0.5 && x[0]>0.2 ? 1:0
'
,
degree
=
1
))
q
=
df
.
TestFunction
(
F
)
c
=
df
.
Function
(
F
)
X
=
df
.
SpatialCoordinate
(
mesh
)
g
=
df
.
Expression
(
'
.00
'
,
degree
=
1
)
u_D
=
df
.
Expression
(
'
1
'
,
degree
=
1
)
def
boundary
(
x
,
on_boundary
):
return
on_boundary
bc
=
df
.
DirichletBC
(
F
,
u_D
,
boundary
)
# Weak form spherical symmetry
form
=
(
df
.
inner
((
c
-
c0
)
/
dt
,
q
*
X
[
0
]
*
X
[
0
])
+
df
.
inner
(
df
.
grad
(
c
),
df
.
grad
(
X
[
0
]
*
X
[
0
]
*
q
))
-
c
.
dx
(
0
)
*
2
*
X
[
0
]
*
q
)
*
df
.
dx
# Weak form 1D
# form = (df.inner((c-c0)/dt, q) +
# df.inner(df.grad(c), df.grad(q))) * df.dx
t
=
0
# Solve in time
for
i
in
range
(
60
):
print
(
np
.
sum
([
x
*
x
*
c0
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
1000
)]))
df
.
solve
(
form
==
0
,
c
)
df
.
assign
(
c0
,
c
)
t
+=
dt
plt
.
plot
(
np
.
linspace
(
0
,
1
,
1000
),
[
c0
([
x
])
for
x
in
np
.
linspace
(
0
,
1
,
1000
)])
```
%% Cell type:code id: tags:
```
python
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment