Skip to content
Snippets Groups Projects
Commit a0a2a4b9 authored by Lars Hubatsch's avatar Lars Hubatsch
Browse files

Rewrite overlay with laplace transform to fit OO code.

parent d95d9d28
No related branches found
No related tags found
No related merge requests found
%% Solve Fokker Planck equation
T = Ternary_model(0, 'Gauss', [-1, 0.000025, 0.05, 0.4, 0.16, 0.2],...
linspace(0.0, 400, 5000));
T.t = 0:0.01:20;
T.solve_tern_frap()
%% Frank's solution to the transfer/rate problem via Laplace transform
x0 = 2;
% D_p = 0.85;
% D_m = 0.15;
D_m = g0(1)*(1-u0-e); % to make equal to ternary FRAP
D_p = g0(end)*(1-u0);
D_m = T.g0(1)*(1-T.u0-T.e); % to make equal to ternary FRAP
D_p = T.g0(end)*(1-T.u0);
ga = 1/9;
%%
p_out = @(D_p, D_m, ga, x0, x, t) 1./(2*sqrt(D_p*pi*t))*...
(exp(-(x+x0).^2./(4*D_p*t))*(ga*sqrt(D_p)-sqrt(D_m))./...
(ga*sqrt(D_p)+sqrt(D_m))+exp(-(x-x0).^2./(4*D_p*t)));
......@@ -13,15 +16,13 @@ p_in = @(D_p, D_m, ga, x0, x, t) 1./(sqrt(pi*t)*(sqrt(D_m)+ga*sqrt(D_p)))*...
exp(-(x-x0*sqrt(D_m/D_p)).^2/(4*D_m*t));
x_left = linspace(-4, 0, 1000);
x_right = linspace(0, 4, 1000);
%% Plot with full ternary model
for i = 1:200
for i = 1:200
figure(2); hold on; cla;
j = i+2;
plot(x_left, p_in(D_p, D_m, ga, x0, x_left, j/100));
plot(x_right, p_out(D_p, D_m, ga, x0, x_right, j/100));
plot(x+a, sol(i, :), 'LineWidth', 2);
plot(T.x+T.a, T.sol(i, :), 'LineWidth', 2);
axis([-1, 3, 0, 0.7]);
shg; pause();
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment