To solve this equation we follow the [Fenics Cahn-Hilliard example](https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/cahn-hilliard/demo_cahn-hilliard.py.rst#rst-header-id1)(the maths is explained [here](https://fenicsproject.org/docs/dolfinx/dev/python/demos/cahn-hilliard/demo_cahn-hilliard.py.html), for our free energy see overleaf).
where we dropped the boundary terms (not explicitly written in second equation) due to the boundary conditions/weak form. We also disregard 1-n, because constants don't change the flux in the absence of chemical reactions (an offset doesn't change the solution in this case, try out by adding $-6.0*v*dx$ to L1, for this check out fenics tutorial Poisson equation).
According to the review (Weber et al. 2019, eqn. 2.29) the boundary length scale is