Newer
Older
/*
* CartDecomposition.hpp
*
* Created on: Aug 15, 2014
* Author: Pietro Incardona
*/
#ifndef CARTDECOMPOSITION_HPP
#define CARTDECOMPOSITION_HPP
#include "config.h"
#include "Decomposition.hpp"
#include <vector>
#include "global_const.hpp"
#include <initializer_list>
#include "SubdomainGraphNodes.hpp"
#include "metis_util.hpp"
#include "dec_optimizer.hpp"
#include "Space/Shape/Box.hpp"
#include <unordered_map>
#include "NN/CellList/CellList.hpp"
/**
* \brief This class decompose a space into subspaces
*
* \tparam dim is the dimensionality of the physical domain we are going to decompose.
* \tparam T type of the space we decompose, Real, Integer, Complex ...
* \tparam layout to use
* \tparam Memory Memory factory used to allocate memory
* \tparam Domain Structure that contain the information of your physical domain
*
* Given an N-dimensional space, this class decompose the space into a Cartesian grid of small
* sub-sub-domain. At each sub-sub-domain is assigned an id that identify which processor is
* going to take care of that part of space (in general the space assigned to a processor is
* simply connected), a second step merge several sub-sub-domain with same id into bigger region
* sub-domain with the id. Each sub-domain has an extended space called ghost part
*
* Assuming that VCluster.getProcessUnitID(), equivalent to the MPI processor rank, return the processor local
* processor id, we define
*
* * local sub-domain: all the sub-domain with id == local processor
* * external ghost box: (or ghost box) are the boxes that compose the ghost space of the processor, or the
* boxes produced expanding every local sub-domain by the ghost extension and intersecting with the sub-domain
* of the other processors
* * Near processors are the processors adjacent to the local processor, where with adjacent we mean all the processor
* that has a non-zero intersection with the ghost part of the local processor, or all the processors that
* produce non-zero external boxes with the local processor, or all the processor that should communicate
* in case of ghost data synchronization
* * internal ghost box: is the part of ghost of the near processor that intersect the space of the
* processor, or the boxes produced expanding the sub-domain of the near processors with the local sub-domain
* * Near processor sub-domain: is a sub-domain that live in the a near (or contiguous) processor
* * Near processor list: the list of all the near processor of the local processor (each processor has a list
* of the near processor)
* * Local ghosts interal or external are all the ghosts that does not involve inter-processor communications
*
* \see calculateGhostBoxes() for a visualization of internal and external ghost boxes
template<unsigned int dim, typename T, template<typename> class device_l=openfpm::device_cpu, typename Memory=HeapMemory, template<unsigned int, typename> class Domain=Box>
// id of the processor in the nn_processor list (local processor id)
size_t id;
// Near processor sub-domains
typename openfpm::vector<::Box<dim,T>> bx;
};
struct Box_proc
{
// Intersection between the local sub-domain enlarged by the ghost and the contiguous processor
openfpm::vector<::Box<dim,T>> bx;
// Intersection between the contiguous processor sub-domain enlarged by the ghost with the
openfpm::vector<::Box<dim,T>> nbx;
// processor
size_t proc;
};
/*! It contain a box definition and from witch sub-domain it come from (in the local processor)
* and an unique across adjacent processors (for communication)
*
* If the box come from the intersection of an expanded sub-domain and a sub-domain
*
* Assuming we are considering the adjacent processor i (0 to getNNProcessors())
*
* ### external ghost box
*
* id = id_exp + N_non_exp + id_non_exp
*
* id_exp = the id in the vector proc_adj_box.get(i) of the expanded sub-domain
*
* id_non_exp = the id in the vector nn_processor_subdomains[i] of the sub-domain
*
* ### internal ghost box
*
* id = id_exp + N_non_exp + id_non_exp
*
* id_exp = the id in the vector nn_processor_subdomains[i] of the expanded sub-domain
*
* id_non_exp = the id in the vector proc_adj_box.get(i) of the sub-domain
*
*/
/*
*/
struct Box_sub : public Box<dim,T>
{
// Domain id
size_t sub;
Box_sub operator=(const Box<dim,T> & box)
{
::Box<dim,T>::operator=(box);
return *this;
}
//! Particular case for local internal ghost boxes
struct Box_sub_k : public Box<dim,T>
{
// Domain id
size_t sub;
//! k \see getLocalGhostIBoxE
long int k;
Box_sub_k operator=(const Box<dim,T> & box)
{
::Box<dim,T>::operator=(box);
return *this;
}
// encap interface to make compatible with OpenFPM_IO
template <int i> auto get() -> decltype( std::declval<Box<dim,T> *>()->template get<i>())
{
return ::Box<dim,T>::template get<i>();
}
struct Box_dom
{
// Intersection between the local sub-domain enlarged by the ghost and the contiguous processor
// sub-domains (External ghost)
// Intersection between the contiguous processor sub-domain enlarged by the ghost with the
// local sub-domain (Internal ghost)
//! Case for local ghost box
struct lBox_dom
{
// Intersection between the local sub-domain enlarged by the ghost and the contiguous processor
// sub-domains (External ghost)
openfpm::vector_std< Box_sub > ebx;
// Intersection between the contiguous processor sub-domain enlarged by the ghost with the
// local sub-domain (Internal ghost)
openfpm::vector_std< Box_sub_k> ibx;
};
//! Type of the domain we are going to decompose
typedef T domain_type;
//! It simplify to access the SpaceBox element
typedef SpaceBox<dim,T> Box;
private:
//! This is the key type to access data_s, for example in the case of vector
typedef typename openfpm::vector<SpaceBox<dim,T>,device_l<SpaceBox<dim,T>>,Memory,openfpm::vector_grow_policy_default,openfpm::vect_isel<SpaceBox<dim,T>>::value >::access_key acc_key;
//! the margin of the sub-domain selected
SpaceBox<dim,T> sub_domain;
//! the set of all local sub-domain as vector
openfpm::vector<SpaceBox<dim,T>> sub_domains;
//! List of near processors
openfpm::vector<size_t> nn_processors;
//! for each sub-domain (first vector), contain the list (nested vector) of the neighborhood processors
//! and for each processor contain the boxes calculated from the intersection
//! of the sub-domains + ghost with the near-by processor sub-domain () and the other way around
//! \see calculateGhostBoxes
openfpm::vector< openfpm::vector< Box_proc > > box_nn_processor_int;
//! It store the same information of box_nn_processor_int organized by processor id
openfpm::vector< Box_dom > proc_int_box;
//! for each sub-domain, contain the list of the neighborhood processors
openfpm::vector<openfpm::vector<long unsigned int> > box_nn_processor;
// for each near-processor store the sub-domain of the near processor
std::unordered_map<size_t, N_box> nn_processor_subdomains;
// for each processor store the set of the sub-domains sent to the adjacent processors
openfpm::vector<openfpm::vector<size_t>> proc_adj_box;
//! it contain the internal ghosts of the local processor
//! Structure that contain for each sub-sub-domain box the processor id
//! Structure that store the cartesian grid information
grid_sm<dim,void> gr;
//! Structure that decompose your structure into cell without creating them
//! useful to convert positions to CellId or sub-domain id in this case
CellDecomposer_sm<dim,T> cd;
//! rectangular domain to decompose
Domain<dim,T> domain;
//! Box Spacing
T spacing[dim];
//! Runtime virtual cluster machine
Vcluster & v_cl;
//! Cell-list that store the geometrical information of the internal ghost boxes
//! Cell-list that store the geometrical information of the local internal ghost boxes
CellList<dim,T,FAST> lgeo_cell;
/*! \brief Create internally the decomposition
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
void CreateDecomposition(Vcluster & v_cl)
{
// Calculate the total number of box and and the spacing
// on each direction
// Get the box containing the domain
SpaceBox<dim,T> bs = domain.getBox();
for (unsigned int i = 0; i < dim ; i++)
{
// Calculate the spacing
spacing[i] = (bs.getHigh(i) - bs.getLow(i)) / gr.size(i);
}
// Here we use METIS
// Create a cartesian grid graph
CartesianGraphFactory<dim,Graph_CSR<nm_part_v,nm_part_e>> g_factory_part;
Graph_CSR<nm_part_v,nm_part_e> gp = g_factory_part.template construct<NO_EDGE,T,dim-1>(gr.getSize(),domain);
// Get the number of processing units
size_t Np = v_cl.getProcessingUnits();
// Get the processor id
long int p_id = v_cl.getProcessUnitID();
// Convert the graph to metis
Metis<Graph_CSR<nm_part_v,nm_part_e>> met(gp,Np);
// fill the structure that store the processor id for each sub-domain
// Optimize the decomposition creating bigger spaces
// And reducing Ghost over-stress
dec_optimizer<dim,Graph_CSR<nm_part_v,nm_part_e>> d_o(gp,gr.getSize());
// set of Boxes produced by the decomposition optimizer
openfpm::vector<::Box<dim,size_t>> loc_box;
d_o.template optimize<nm_part_v::sub_id,nm_part_v::id>(gp,p_id,loc_box,box_nn_processor);
// produce the list of the contiguous processor (nn_processors) and link nn_processor_subdomains to the
// processor list
for (size_t i = 0 ; i < box_nn_processor.size() ; i++)
{
for (size_t j = 0 ; j < box_nn_processor.get(i).size() ; j++)
{
nn_processors.add(box_nn_processor.get(i).get(j));
}
}
// make the list sorted and unique
std::sort(nn_processors.begin(), nn_processors.end());
auto last = std::unique(nn_processors.begin(), nn_processors.end());
nn_processors.erase(last, nn_processors.end());
// produce the list of the contiguous processor (nn_processors) and link nn_processor_subdomains to the
// processor list
for (size_t i = 0 ; i < box_nn_processor.size() ; i++)
{
for (size_t j = 0 ; j < box_nn_processor.get(i).size() ; j++)
{
// processor id near to this sub-domain
size_t proc_id = box_nn_processor.get(i).get(j);
size_t k = 0;
// search inside near processor list
for (k = 0 ; k < nn_processors.size() ; k++)
if (nn_processors.get(k) == proc_id) break;
nn_processor_subdomains[proc_id].id = k;
}
}
// Initialize ss_box and bbox
if (loc_box.size() >= 0)
{
SpaceBox<dim,size_t> sub_dc = loc_box.get(0);
SpaceBox<dim,T> sub_d(sub_dc);
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
ss_box = sub_d;
for (size_t s = 1 ; s < loc_box.size() ; s++)
SpaceBox<dim,size_t> sub_dc = loc_box.get(s);
SpaceBox<dim,T> sub_d(sub_dc);
// re-scale and add spacing (the end is the starting point of the next domain + spacing)
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
// Calculate the bound box
bbox.enclose(sub_d);
// Create the smallest box contained in all sub-domain
ss_box.contained(sub_d);
// fine_s structure contain the processor id for each sub-sub-domain
// with sub-sub-domain we mean the sub-domain decomposition before
// running dec_optimizer (before merging sub-domains)
auto it = gp.getVertexIterator();
while (it.isNext())
{
size_t key = it.get();
// fill with the fine decomposition
fine_s.get(key) = gp.template vertex_p<nm_part_v::id>(key);
++it;
}
// Get the smallest sub-division on each direction
::Box<dim,T> unit = getSmallestSubdivision();
// Get the processor bounding Box
::Box<dim,T> bound = getProcessorBounds();
size_t div[dim];
for (size_t i = 0 ; i < dim ; i++)
div[i] = (size_t)((bound.getHigh(i) - bound.getLow(i)) / unit.getHigh(i));
// Create shift
Point<dim,T> orig;
// p1 point of the Processor bound box is the shift
for (size_t i = 0 ; i < dim ; i++)
orig.get(i) = bound.getLow(i);
// Initialize the geo_cell structure
geo_cell.Initialize(domain,div,orig);
// Save the ghost boundaries
Ghost<dim,T> ghost;
/*! \brief Create the external local ghost boxes
*
* \param ghost margin to enlarge
*
*/
void create_loc_ghost_ebox(Ghost<dim,T> & ghost)
{
// Save the ghost
this->ghost = ghost;
loc_ghost_box.resize(sub_domains.size());
// For each sub-domain
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
SpaceBox<dim,T> sub_with_ghost = sub_domains.get(i);
// enlarge the sub-domain with the ghost
sub_with_ghost.enlarge(ghost);
// intersect with the other local sub-domains
for (size_t j = 0 ; j < sub_domains.size() ; j++)
{
if (i == j)
continue;
::Box<dim,T> bi;
bool intersect = sub_with_ghost.Intersect(::SpaceBox<dim,T>(sub_domains.get(j)),bi);
if (intersect == true)
{
Box_sub b;
b.sub = j;
b = bi;
// local external ghost box
loc_ghost_box.get(i).ebx.add(b);
// search this box in the internal box of the sub-domain j
for (size_t k = 0; k < loc_ghost_box.get(j).ibx.size() ; k++)
{
if (loc_ghost_box.get(j).ibx.get(k).sub == i)
{
loc_ghost_box.get(j).ibx.get(k).k = loc_ghost_box.get(i).ebx.size()-1;
break;
}
}
}
}
}
}
/*! \brief Create the internal local ghost boxes
*
* \param ghost margin to enlarge
*
*/
void create_loc_ghost_ibox(Ghost<dim,T> & ghost)
{
loc_ghost_box.resize(sub_domains.size());
// For each sub-domain
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
// intersect with the others local sub-domains
for (size_t j = 0 ; j < sub_domains.size() ; j++)
{
if (i == j)
continue;
SpaceBox<dim,T> sub_with_ghost = sub_domains.get(j);
// enlarge the sub-domain with the ghost
sub_with_ghost.enlarge(ghost);
bool intersect = sub_with_ghost.Intersect(::SpaceBox<dim,T>(sub_domains.get(i)),bi);
loc_ghost_box.get(i).ibx.add(b);
}
}
}
}
/*! \brief Create the subspaces that decompose your domain
*
* Create the subspaces that decompose your domain
*
*/
void CreateSubspaces()
{
// Create a grid where each point is a space
grid_sm<dim,void> g(div);
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// create a grid_key_dx iterator
grid_key_dx_iterator<dim> gk_it(g);
// Divide the space into subspaces
while (gk_it.isNext())
{
//! iterate through all subspaces
grid_key_dx<dim> key = gk_it.get();
//! Create a new subspace
SpaceBox<dim,T> tmp;
//! fill with the Margin of the box
for (int i = 0 ; i < dim ; i++)
{
tmp.setHigh(i,(key.get(i)+1)*spacing[i]);
tmp.setLow(i,key.get(i)*spacing[i]);
}
//! add the space box
sub_domains.add(tmp);
// add the iterator
++gk_it;
}
}
/*! \brief Create the box_nn_processor_int (bx part) structure
*
* This structure store for each sub-domain of this processors enlarged by the ghost size the boxes that
* come from the intersection with the near processors sub-domains (External ghost box)
*
* \param ghost margins
*
* \note Are the G8_0 G9_0 G9_1 G5_0 boxes in calculateGhostBoxes
* \see calculateGhostBoxes
*
*/
void create_box_nn_processor_ext(Ghost<dim,T> & ghost)
{
box_nn_processor_int.resize(sub_domains.size());
proc_int_box.resize(getNNProcessors());
// For each sub-domain
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
SpaceBox<dim,T> sub_with_ghost = sub_domains.get(i);
// enlarge the sub-domain with the ghost
sub_with_ghost.enlarge(ghost);
// resize based on the number of adjacent processors
box_nn_processor_int.get(i).resize(box_nn_processor.get(i).size());
// For each processor adjacent to this sub-domain
for (size_t j = 0 ; j < box_nn_processor.get(i).size() ; j++)
{
// Contiguous processor
size_t p_id = box_nn_processor.get(i).get(j);
// store the box in proc_int_box storing from which sub-domain they come from
Box_dom & proc_int_box_g = proc_int_box.get(ProctoID(p_id));
// get the set of sub-domains of the adjacent processor p_id
openfpm::vector< ::Box<dim,T> > & nn_processor_subdomains_g = nn_processor_subdomains[p_id].bx;
// near processor sub-domain intersections
openfpm::vector< ::Box<dim,T> > & box_nn_processor_int_gg = box_nn_processor_int.get(i).get(j).bx;
// for each near processor sub-domain intersect with the enlarged local sub-domain and store it
for (size_t b = 0 ; b < nn_processor_subdomains_g.size() ; b++)
bool intersect = sub_with_ghost.Intersect(::Box<dim,T>(nn_processor_subdomains_g.get(b)),bi);
if (intersect == true)
{
struct p_box pb;
pb.box = bi;
pb.proc = p_id;
pb.lc_proc = ProctoID(p_id);
//
// Updating
//
// vb_ext
// box_nn_processor_int
// proc_int_box
//
// They all store the same information but organized in different ways
// read the description of each for more information
//
box_nn_processor_int_gg.add(bi);
proc_int_box_g.ebx.add();
proc_int_box_g.ebx.last() = bi;
proc_int_box_g.ebx.last().sub = i;
// Search for the correct id
size_t k = 0;
size_t p_idp = ProctoID(p_id);
for (k = 0 ; k < proc_adj_box.get(p_idp).size() ; k++)
{
if (proc_adj_box.get(p_idp).get(k) == i)
break;
}
if (k == proc_adj_box.get(p_idp).size())
std::cerr << "Error: " << __FILE__ << ":" << __LINE__ << " sub-domain not found\n";
proc_int_box_g.ebx.last().id = (k * nn_processor_subdomains_g.size() + b) * v_cl.getProcessingUnits() + p_id;
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
}
}
}
}
}
/*! \brief Create the box_nn_processor_int (nbx part) structure, the geo_cell list and proc_int_box
*
* This structure store for each sub-domain of this processors the boxes that come from the intersection
* of the near processors sub-domains enlarged by the ghost size (Internal ghost box). These boxes
* fill a geometrical cell list. The proc_int_box store the same information ordered by near processors
*
* \param ghost margins
*
* \note Are the B8_0 B9_0 B9_1 B5_0 boxes in calculateGhostBoxes
* \see calculateGhostBoxes
*
*/
void create_box_nn_processor_int(Ghost<dim,T> & ghost)
{
box_nn_processor_int.resize(sub_domains.size());
proc_int_box.resize(getNNProcessors());
// For each sub-domain
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
// For each processor contiguous to this sub-domain
for (size_t j = 0 ; j < box_nn_processor.get(i).size() ; j++)
{
// Contiguous processor
size_t p_id = box_nn_processor.get(i).get(j);
// get the set of sub-domains of the contiguous processor p_id
openfpm::vector< ::Box<dim,T> > & nn_p_box = nn_processor_subdomains[p_id].bx;
// get the local processor id
size_t lc_proc = nn_processor_subdomains[p_id].id;
// For each near processor sub-domains enlarge and intersect with the local sub-domain and store the result
for (size_t k = 0 ; k < nn_p_box.size() ; k++)
{
// enlarge the near-processor sub-domain
::Box<dim,T> n_sub = nn_p_box.get(k);
// local sub-domain
::SpaceBox<dim,T> l_sub = sub_domains.get(i);
// Create a margin of ghost size around the near processor sub-domain
n_sub.enlarge(ghost);
// Intersect with the local sub-domain
p_box b_int;
bool intersect = n_sub.Intersect(l_sub,b_int.box);
// store if it intersect
if (intersect == true)
{
// the box fill with the processor id
b_int.proc = p_id;
// fill the local processor id
b_int.lc_proc = lc_proc;
//
// Updating
//
// vb_int
// box_nn_processor_int
// proc_int_box
//
// They all store the same information but organized in different ways
// read the description of each for more information
//
// add the box to the near processor sub-domain intersections
openfpm::vector< ::Box<dim,T> > & p_box_int = box_nn_processor_int.get(i).get(j).nbx;
p_box_int.add(b_int.box);
vb_int.add(b_int);
// store the box in proc_int_box storing from which sub-domain they come from
Box_dom & pr_box_int = proc_int_box.get(ProctoID(p_id));
// Search for the correct id
size_t s = 0;
size_t p_idp = ProctoID(p_id);
for (s = 0 ; s < proc_adj_box.get(p_idp).size() ; s++)
{
if (proc_adj_box.get(p_idp).get(s) == i)
break;
}
if (s == proc_adj_box.get(p_idp).size())
std::cerr << "Error: " << __FILE__ << ":" << __LINE__ << " sub-domain not found\n";
sb.id = (k * proc_adj_box.get(p_idp).size() + s) * v_cl.getProcessingUnits() + v_cl.getProcessUnitID();
// update the geo_cell list
const grid_key_dx<dim> p1 = geo_cell.getCellGrid(b_int.box.getP1());
const grid_key_dx<dim> p2 = geo_cell.getCellGrid(b_int.box.getP2());
// Get the grid and the sub-iterator
auto & gi = geo_cell.getGrid();
grid_key_dx_iterator_sub<dim> g_sub(gi,p1,p2);
// add the box-id to the cell list
while (g_sub.isNext())
{
auto key = g_sub.get();
geo_cell.addCell(gi.LinId(key),vb_int.size()-1);
++g_sub;
}
}
}
}
}
}
// Heap memory receiver
HeapMemory hp_recv;
// vector v_proc
openfpm::vector<size_t> v_proc;
// Receive counter
size_t recv_cnt;
/*! \brief Message allocation
*
* \param message size required to receive from i
* \param total message size to receive from all the processors
* \param the total number of processor want to communicate with you
* \param i processor id
* \param ri request id (it is an id that goes from 0 to total_p, and is unique
* every time message_alloc is called)
* \param ptr a pointer to the vector_dist structure
*
* \return the pointer where to store the message
*
*/
static void * message_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
CartDecomposition<dim,T,device_l,Memory,Domain> * cd = static_cast< CartDecomposition<dim,T,device_l,Memory,Domain> *>(ptr);
cd->nn_processor_subdomains[i].bx.resize(msg_i / sizeof(::Box<dim,T>) );
return cd->nn_processor_subdomains[i].bx.getPointer();
public:
/*! \brief Cartesian decomposition copy constructor
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
CartDecomposition(CartDecomposition<dim,T,device_l,Memory,Domain> && cd)
:sub_domain(cd.sub_domain),gr(cd.gr),cd(cd.cd),domain(cd.domain),v_cl(cd.v_cl)
// Reset the box to zero
bbox.zero();
//! the set of all local sub-domain as vector
sub_domains.swap(cd.sub_domains);
for (size_t i = 0 ; i < dim ; i++)
{
//! Box Spacing
this->spacing[i] = spacing[i];
}
}
/*! \brief Cartesian decomposition constructor
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
CartDecomposition(Vcluster & v_cl)
{
// Reset the box to zero
bbox.zero();
}
//! Cartesian decomposition destructor
~CartDecomposition()
{}
// It store all the boxes of the near processors in a linear array
struct p_box
{
//! Box that identify the intersection of the ghost of the near processor with the
//! processor sub-domain
::Box<dim,T> box;
//! local processor id
size_t lc_proc;
//! processor id
size_t proc;
/*! \brief Check if two p_box are the same
*
* \param pb box to check
*
*/
bool operator==(const p_box & pb)
{
return pb.lc_proc == lc_proc;
}
};
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
/*! \brief class to select the returned id by ghost_processorID
*
*/
class box_id
{
public:
/*! \brief Return the box id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return box id
*
*/
inline static size_t id(p_box & p, size_t b_id)
{
return b_id;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class processor_id
{
public:
/*! \brief Return the processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return processor id
*
*/
inline static size_t id(p_box & p, size_t b_id)
{
return p.proc;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class lc_processor_id
{
public:
/*! \brief Return the near processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return local processor id
*
*/
inline static size_t id(p_box & p, size_t b_id)
{
return p.lc_proc;
}
};
/*! /brief Given a point it return the set of boxes in which the point fall
*
* \param p Point to check
* \return An iterator with the id's of the internal boxes in which the point fall
*
*/
auto getInternalIDBoxes(Point<dim,T> & p) -> decltype(geo_cell.getIterator(geo_cell.getCell(p)))
{
return geo_cell.getIterator(geo_cell.getCell(p));
}
#define UNIQUE 1
#define MULTIPLE 2
/*! \brief Given a position it return if the position belong to any neighborhood processor ghost
* \tparam id type of if to get box_id processor_id lc_processor_id
* \param opt intersection boxes of the same processor can overlap, so in general the function
* can produce more entry with the same processor, the UNIQUE option eliminate double entries
* (UNIQUE) is for particle data (MULTIPLE) is for grid data [default MULTIPLE]
*
* \param return the processor ids
*
*/
template <typename id> inline const openfpm::vector<size_t> ghost_processorID(Point<dim,T> & p, const int opt = MULTIPLE)
// Check with geo-cell if a particle is inside one Cell containing boxes
auto cell_it = geo_cell.getIterator(geo_cell.getCell(p));
// For each element in the cell, check if the point is inside the box
// if it is, store the processor id
while (cell_it.isNext())
{
size_t bid = cell_it.get();
if (vb_int.get(bid).box.isInside(p) == true)
{
ids.add(id::id(vb_int.get(bid),bid));
// Make the id unique
if (opt == UNIQUE)
ids.unique();
return ids;
}
/*! \brief Given a position it return if the position belong to any neighborhood processor ghost
* \tparam id type of if to get box_id processor_id lc_processor_id
* \param p Particle position
*
* \param return the processor ids
*
*/
template<typename id, typename Mem> inline const openfpm::vector<size_t> ghost_processorID(const encapc<1,Point<dim,T>,Mem> & p, const int opt = MULTIPLE)