Newer
Older
#!/usr/bin/env Rscript
#+ echo=FALSE
suppressMessages(require(docopt))
doc <- '
Perform an enrichment analysis for a set of genes
Usage: cp_enrichment.R [options] <grouped_gene_lists_rdata>
Options:
--overlay_expr_data Tsv with overlay data for the kegg pathways
'
opts <- docopt(doc, commandArgs(TRUE)) ## does not work when spining
# opts <- docopt(doc, "--overlay_expr_data ctrl_fc_expr_filtered.txt geneClusters.RData" )
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.13/R/core_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.13/R/ggplot_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.13/R/bio/diffex_commons.R")
require.auto(clusterProfiler)
require.auto(ReactomePA)
## to fix child support issue with knitr, see also
## http://stackoverflow.com/questions/20030523/knitr-nested-child-documents
## https://github.com/yihui/knitr/issues/38
# todo disabled because root.dir in parent document seems the only working solution
#if(exists('project_dir')) setwd(project_dir)
#print(getwd())
## load the data
geneLists <- local(get(load(opts$grouped_gene_lists_rdata)))
#geneLists %<>% filter(cluster %in% c("cluster_1", "cluster_2"))
if(!is.null(opts$overlay_expr_data)){
overlayData <- read.delim(opts$overlay_expr_data)
}
## TODO expose options to run gesa instead (by assuming that gene lists are sorted)
## see http://www.bioconductor.org/packages/release/bioc/vignettes/clusterProfiler/inst/doc/clusterProfiler.pdf for details
resultsBaseName=basename(opts$grouped_gene_lists_rdata) %>% trim_ext(".RData") %>% paste0(".")
########################################################################################################################
#' ## Enrichment Analysis
#' This analysis was performed using [David](http://david.abcc.ncifcrf.gov/). The following ontologies were tested: `r paste(DEF_DAVID_ONTOLOGIES, collapse=', ')`
listLabels <- geneLists %>% select(-ensembl_gene_id) %>% distinct
listLabels %<>% transform(list_label=do.call(paste, c(listLabels, sep="__")))
geneLists %>% inner_join(listLabels) %>%
ggplot(aes(list_label)) +
geom_bar() +
coord_flip() +
ggtitle("gene list sizes to be tested for term enrichment") +
ylab("")
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
guess_cp_species <- function(ensIds){
an_id <-ensIds[1]
if(str_detect(an_id, "ENSG")){
return("human")
}else if(str_detect(an_id, "ENSMUSG")){
return("mouse")
}else if(str_detect(an_id, "ENSDARG")){
return("zebrafish")
}else if(str_detect(an_id, "FBgn")){
return("fly")
}else{
stop(paste("could not clusterProfiler species name from ", an_id))
}
}
guess_anno_db <- function(ensIds){
an_id <-ensIds[1]
if(str_detect(an_id, "ENSG")){
return("org.Hs.eg.db")
}else if(str_detect(an_id, "ENSMUSG")){
return("org.Mm.eg.db")
}else if(str_detect(an_id, "ENSDARG")){
return("org.Dr.eg.db")
}else if(str_detect(an_id, "FBgn")){
return("org.Dm.eg.db")
}else{
stop(paste("could not anno db mart from ", an_id))
}
}
#source("https://bioconductor.org/biocLite.R")
#biocLite("org.Mm.eg.db")
#biocLite("org.Hm.eg.db")
#biocLite("org.Dr.eg.db")
#biocLite("org.Dm.eg.db")
cpSpecies <- guess_cp_species(geneLists$ensembl_gene_id)
annoDb <- guess_anno_db(geneLists$ensembl_gene_id) # e.g. "org.Hs.eg.db"
## supported ids
#idType("org.Hs.eg.db")
## convert to entrez gene ids
geneLists %<>% mutate(entrez_gene_id=bitr(x, fromType="ENSEMBL", toType="ENTREZID", annoDb=annoDb))
## TODO expose as argument
pCutoff <- 0.05
geneIds <- geneLists %>% filter(cluster %in% c("cluster_2")) %$% geneLists
enrichKEGG(gene = geneIds, organism = cpSpecies, pvalueCutoff = pCutoff, readable = TRUE)
enrichPathway(gene = geneIds, organism = cpSpecies, pvalueCutoff = pCutoff, readable = TRUE)
enrichGO(gene = gene, universe = names(geneList), organism = "human", ont = "CC", pAdjustMethod = "BH", pvalueCutoff = 0.01, qvalueCutoff = 0.05, readable = TRUE)
enrResults <- quote(geneLists %>% do(davidAnnotationChart(.$ensembl_gene_id))) %>%
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
cache_it(paste0("enrdata_", digest(geneLists)))
write.delim(enrResults, file=paste0(resultsBaseName, "enrResults.txt"))
# enrResults <- read.delim(paste0(resultsBaseName, "enrResults.txt"))
#' [Enrichment Results](`r paste0(resultsBaseName, "enrResults.txt")`)
sigEnrResults <- subset(enrResults, Bonferroni <0.01)
nrow(enrResults)
nrow(sigEnrResults)
write.delim(sigEnrResults, file=paste0(resultsBaseName, "sigEnrResults.txt"))
# sigEnrResults <- read.delim(paste0(resultsBaseName, "sigEnrResults.txt"))
#' [Very Significant Terms](`r paste0(resultsBaseName, "sigEnrResults.txt")`)
#+ include=FALSE, eval=FALSE
## plot the enrichment results
#sigEnrResults %>% group_by(Category, add=T) %>% do({
# logPlot <- . %>% ggplot(aes(Term, PValue)) +
# geom_bar(stat="identity")+coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(.$Category[1]) +
# scale_y_log10()
# print(logPlot)
#})
#sigEnrResults %>%
## select(-Genes) %>%
# do({
# enrResultsGrp <- .
# ## DEBUG enrResultsGrp <- sigEnrResults
## geneLists %>% first(1) %>% select(-ensembl_gene_id) %>% paste0(., collapse="_")
##browser()
# label <- geneLists %>% semi_join(enrResultsGrp) %>% first(1) %>% dplyr::select(-ensembl_gene_id) %>% paste0(., collapse="_")
#
# echo("processing", label)
#
# logPlot <- enrResultsGrp %>%
# ## fix factor order
# mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(Category))) %>%
# ggplot(aes(Term, PValue, fill=Category)) +
# geom_bar(stat="identity")+
# coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(label) +
# scale_y_log10()
#
# ggsave(paste0(resultsBaseName, label, ".enrichmed_terms.pdf"))
# print(logPlot)
#})
##ggsave2()
## include=FALSE, error=TRUE
#+ error=TRUE, echo=FALSE
warning("dropping levels")
sigEnrResults %<>% mutate(Category=ac(Category)) ## drop unsused level to get consistent color palette
term_category_colors <- create_palette(unique(ac(sigEnrResults$Category)))
dir.create("figures")
term_barplot_files <- sigEnrResults %>%
## chop and pad category names
mutate(Term=str_sub(Term, 1, 70) %>% str_pad(70)) %>%
do({
enrResultsGrp <- .
## DEBUG enrResultsGrp <- sigEnrResults
label <- geneLists %>% semi_join(enrResultsGrp) %>% first(1) %>% dplyr::select(-ensembl_gene_id) %>% paste0(., collapse="_")
# warning(paste0("processing terms", paste(ac(unique(enrResultsGrp$Category)), collapse=",")))
logPlot <- enrResultsGrp %>%
## fix factor order
mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(as.factor(Category)))) %>%
ggplot(aes(Term, PValue, fill=Category)) +
geom_bar(stat="identity")+
scale_fill_manual(values = term_category_colors, drop=F, name="Ontology") +
coord_flip() +
xlab("Enriched Terms") +
ggtitle(label) +
scale_y_log10()
# print(logPlot)
## todo use builtin method to create filesystem-compatible name
fileNameLabel <- label %>%
str_replace_all("!=", "ne") %>%
str_replace_all(">", "gt") %>%
str_replace_all("<", "lt") %>%
str_replace_all(fixed("&"), "AND") %>%
str_replace_all(fixed("|"), "OR") %>%
str_replace_all(" ", "_")
# ggsave(paste0("enrichmed_terms__", fileNameLabel, ".pdf"))
# print(logPlot)
tmpPng <- paste0("figures/enrterms__", fileNameLabel, ".png")
ggsave(tmpPng, logPlot, width=10, height = 2+round(nrow(enrResultsGrp)/5), limitsize=FALSE)
data.frame(file=tmpPng)
})
#+ results="asis"
l_ply(term_barplot_files$file, function(pngFile){ cat(paste0("<img src='", pngFile, "'><br>"))})
########################################################################################################################
# ' ## Enriched KEGG Pathways
#+ eval=nrow(sigEnrResults %>% filter(Category=="KEGG_PATHWAY")) >0
#' To understand spatio-temporal changes in gene expression better we now overlay enriched kegg pathways with the -log10(q_value) of each contrast. The direction of the expression changes is encoded as color, whereby red indicates that sample_1 is overexpressed. Because we have multiple contrasts of interest, this defines a slice-color barcode for each gene. To relate the barcode to contrasts we define the following slice order:
## todo why is tidyr not processing an empty dataframe
keggPathways <- sigEnrResults %>%
filter(Category=="KEGG_PATHWAY") %>%
separate(Term, c('kegg_pathway_id', 'pathway_description'), sep="\\:", remove=F) %>%
with(kegg_pathway_id) %>% ac() %>% unique()
##+ results='asis'
#if(!exists("keggPathways") | nrow(keggPathways)==0){
# cat("No enriched pathways found")
#}
#+ echo=FALSE
require(pathview)
require(png)
# keggPathways <- keggPathways[1]
#if(nrow(keggPathways)==0){
# echo("no enriched kegg pathways were found in the dataset")
#}else{
#keggOrCode <- "mmu"
keggOrCode <- guess_pathview_species(geneLists$ensembl_gene_id)
## prepare p-value data
sliceData <- overlayData %>%
# dcast(ensembl_gene_id ~ comparison, value.var="plot_score") %>%
column2rownames("ensembl_gene_id")
#sliceData %>% head %>% kable()
data.frame(set=names(sliceData)) %>% mutate(slice_index=row_number()) %>% kable()
plot_pathway <- function(pathwayID, overlayData){
# pathwayID="mmu04015"
# browser()
# echo("processing pathway", pathwayID)
pv.out <- pathview(
gene.data = overlayData,
pathway.id = pathwayID,
species = keggOrCode,
# out.suffix = pathwayID$kegg.description,
# out.suffix = pathwayID,
multi.state = ncol(overlayData)>1,
# kegg.native=F,
# node.sum = "mean", # the method name to calculate node summary given that multiple genes or compounds are mapped to it
limit = list(gene = c(-4,4)),
gene.idtype="ensembl"
)
outfile <- paste0(pathwayID, ".pathview", ifelse(ncol(overlayData)>1, ".multi", ""), ".png")
## move pathway plots into figures sub-directory
figuresPlotFile <- file.path("figures", outfile)
system(paste("mv", outfile, figuresPlotFile))
system(paste("rm", paste0(pathwayID, ".xml"), paste0(pathwayID, ".png")))
## interactive plotting
# ima <- readPNG(outfile)
# plot.new()
# lim <- par()
# rasterImage(ima, lim$usr[1], lim$usr[3], lim$usr[2], lim$usr[4])
pv.out$plotfile=figuresPlotFile
pv.out$pathway_id=pathwayID
return(pv.out)
}
#keggPathways <- c("mmu04976", "mmu04972", "mmu04810", "mmu04520", "mmu04530", "mmu04270", "mmu04015")
#keggPathways <- c("mmu04015")
pathwayPlots <- keggPathways %>% llply(function(pathwayID){
plot_pathway(pathwayID, sliceData)
})
save(pathwayPlots, file=".pathwayPlots.RData")
# pathwayPlots <- local(get(load("pathwayPlots.RData")))
## prepare tooltips with expression scores
ens2entrez <- quote({
mart <- biomaRt::useDataset(guess_mart(geneLists$ensembl_gene_id), mart = biomaRt::useMart("ensembl"))
biomaRt::getBM(attributes=c('ensembl_gene_id', 'entrezgene', 'external_gene_name'), mart=mart) %>% filter(!is.na(entrezgene))
}) %>% cache_it("ens2entrez") %>% distinct(ensembl_gene_id)
#unlen(ens2entrez$ensembl_gene_id)
toolTipData <- overlayData %>% left_join(ens2entrez)
makeTooltip <- function(entrez_id){
toolTipData %>% filter(entrezgene==entrez_id) %>% dplyr::select(-entrezgene) %>% gather() %$% paste(key, value, sep=": ") %>% paste(collapse="\n") #%>% cat
}
#entrez_id=14679
#entrez_id=34234234234234
#makeTooltip("14679")
#+ results="asis", echo=FALSE
## simple non-clickable plots
## http://stackoverflow.com/questions/12588323/r-how-to-extract-values-for-the-same-named-elements-across-multiple-objects-of
#unlist(lapply(pathwayPlots, "[[", "plotfile"))
# unlist(lapply(pathwayPlots, "[[", "plotfile")) %>% l_ply(function(pngFile){ cat(paste0("<img src='", pngFile, "'><br>"))})
#cat("
#<style type='text/css'>
# img {
# max-width: 100%;
# }
#</style>
#")
## todo add tooltips with additinal info
## http://stackoverflow.com/questions/5478940/how-to-create-a-html-tooltip-on-top-of-image-map
## extended version with clickable links
pathwayPlots %>% l_ply(function(plotData){
#pngFile="mmu04015.pathview.png"
#plotData <- pathwayPlots[[1]]
#plotData <- unlist(pathwayPlots)
# pathway_id=(basename(pngFile) %>% str_split_fixed("[.]", 2))[,1]
pngFile <- plotData$plotfile
pathway_id=plotData$pathway_id
## create link for image map
keggNodes <- plotData$plot.data.gene %>%
## remove box offset
mutate(x=x-22, y=y-8) %>% ## todo does not work for non-gene elements
mutate(link=paste0("http://www.kegg.jp/dbget-bin/www_bget?", keggOrCode, ":", kegg.names )) %>%
rowwise() %>% do({ curNode=.; mutate(as.df(curNode), tooltip=makeTooltip(as.integer(curNode$kegg.names)))})
## create tooltip by using mapping to
# "http://www.kegg.jp/dbget-bin/www_bget?mmu:16412
## first the image itself
# cat(paste0("<img usemap='#", pathway_id,"' src='", pngFile, "'><br>"))
cat(paste0("<p><div style='width: 2000px'><img style='float: left' usemap='#", pathway_id,"' src='", pngFile, "'></div><br>"))
cat(paste0("<map name='", pathway_id,"'>"))
#keggNodes %>% rowwise() %>% {curNode=.; cat(curNode$name)}
#see http://www.html-world.de/180/image-map/
keggNodes %>% a_ply(1, function(curNode){
rectDef=with(curNode, paste(x, y, x+width, y+height, sep=","))
# paste0("<area href='", curNode$link, "' alt='Text' coords='", rectDef , "' shape='rect'>") %>% cat()
paste0("<area href='", curNode$link, "' title='", curNode$tooltip, "' alt='Text' coords='",rectDef , "' shape='rect'>") %>% cat()
})
cat("</map></p><br>")
})
## respin it for cild inclusion
# require(knitr); setwd("/Volumes/projects/bioinfo/scripts/ngs_tools/dev/common"); spin("david_enrichment.R", knit=F)