Newer
Older
#if(!file.exists(r_script)){
# stop(paste("file does not exist\n", doc))
#}
########################################################################################################################
#' Differential gene Expression Analysis
#+ include=FALSE
########################################################################################################################
#source("http://bioconductor.org/biocLite.R")
devtools::source_url("https://dl.dropboxusercontent.com/u/113630701/datautils/R/core_commons.R")
devtools::source_url("https://dl.dropboxusercontent.com/u/113630701/datautils/R/ggplot_commons.R")
require(cummeRbund)
devtools::source_url("https://dl.dropboxusercontent.com/u/113630701/datautils/R/bio/cummerutils.R")
#options(width=300) ## always overflow boxes to keep tables in shape with scrollbars
#options(java.parameters = "-Xmx4g" ) # required by read.xlsx
#require.auto(xlsx)
doc <- '
Convert a cuffdiff into a dge-report
Usage: dge_analysis.R <report_name>
Options:
--cuffdir <DIR> Cache results [default: .]
--dge-pairs <dgepairs> Txt files with sample pairs for which dge analysis should be performed
-S Dont do general statistics and qc analysis
#opts <- docopt(doc)
opts <- docopt(doc, "test_report")
if(is.na(file.info(cuffdb_directory)$isdir)){
stop(paste("db directory does not exist", doc))
}
#knitr::opts_knit$set(root.dir = getwd())
#######################################################################################################################
#' Used cuffdiff database in `r normalizePath(opts$cuffdir)`
## workaround until cummerbund is fixed
tmpdir <- tempfile("cuffdb_dir")
system(paste("cp -r", cuffdb_directory, tmpdir))
cuff <- readCufflinks(dir=tmpdir)
replicates(cuff) %>% mutate(file=basename(file)) %>% select(-c(total_mass, norm_mass, internal_scale, external_scale))
#######################################################################################################################
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# create some global summary statistic plots
dispersionPlot(genes(cuff)) #+ aes(alpha=0.01)
csDensity(genes(cuff))
#ggsave2(csBoxplot(genes(cuff))+ ggtitle("fpkm boxplots"))
csDensity(genes(cuff),features=T)
csBoxplot(genes(cuff),replicates=T)
fpkmSCVPlot(genes(cuff))
#csScatter(genes(cuff), "a", "d", smooth=F) + aes(color=abs(log2(a/b))>2) + scale_colour_manual(values=c("darkgreen", "red"))
#MAplot(genes(cuff), "a", "d")+ aes(color=abs(log2(M))>2)+ ggtitle("MA-plot: a/d")
#MAplot(genes(cuff), "a", "b", useCount=T) #+ aes(color=abs(log2(M))>2)+ ggtitle("MA-plot: Luc/KD")
#csVolcano(genes(cuff),"aRGm", "N") + ggtitle("odd line-shaped fan-out in volcano plot")
#csVolcano(genes(cuff),"a", "b")
csVolcanoMatrix(genes(cuff))
#csVolcano(genes(cuff),"a", "b")
require.auto(edgeR)
plotMDS(repFpkmMatrix(genes(cuff)), top=500, main="top500 MDS")
if(unlen(replicates(cuff)$sample)>2){ ## >2 only, because MDS will fail with just 2 samples
MDSplot(genes(cuff)) + ggtitle("mds plot")
}
MDSplot(genes(cuff), replicates=T) + ggtitle("mds plot")
PCAplot(genes(cuff),"PC1","PC2",replicates=T)
noTextLayer <- function(gg){ gg$layers[[2]] <- NULL;; gg}
noTextLayer(csDistHeat(genes(cuff)) + ggtitle("mouse zone correlation"))
noTextLayer(csDistHeat(genes(cuff),replicates=T) + ggtitle("mouse replicate correlation")) #+ scale_fill_gradientn(colours=c(low='lightyellow',mid='orange',high='darkred'), limits=c(0,0.15))
csDendro(genes(cuff),replicates=T)
#pdf(paste0(basename(getwd()),"_rep_clustering.pdf"))
#csDendro(genes(cuff),replicates=T)
#dev.off()
#######################################################################################################################
#' ## Raw data tables
## merge in basic gene info
#xls(runInfo(cuff))
#setwd("/Volumes/project-zeigerer/Rab5_NGS/results/")
geneFpkm<-fpkm(genes(cuff))
write.delim(geneFpkm, file="geneFpkm.txt")
# gene.fpkm <- read.delim("gene.fpkm.txt")
repGeneFPKMs <- repFpkmMatrix(genes(cuff))
write.delim(repGeneFPKMs, file="repGeneFPKMs.txt")
# repGeneFPKMs <- read.delim("repGeneFPKMs.txt")
# repGeneFPKMs <- local(get(load("repGeneFPKMs.RData")))
#' [FPKMs by Replicate](repGeneFPKMs.txt)
geneCounts<-count(genes(cuff))
max(geneCounts$count)
write.delim(geneCounts, file="geneCounts.txt")
geneCgene.matrix<-fpkmMatrix(genes(cuff))
#' [Raw Counts](geneCounts.txt)
repCounts <- countMatrix(genes(cuff))
write.delim(repCounts, file="repCounts.txt")
# repCounts <- read.delim("repCounts.txt")
#' [Raw Counts by Replicate](repCounts.txt)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#######################################################################################################################
#' ## Extract lists of differentially expressed genes
coi <- c("aRGm", "aRGp")
allDiff <- diffData(genes(cuff)) %>%
filter(sample_1 %in% coi, sample_2 %in% coi) %>%
## discard all genes that are not expressed in any of the cell types (>1)
filter(gene_id %in% getExpressedGenes(cuff))
#degs <- subset(allDiff, q_value<0.01)
allDiff <- transform(allDiff, isHit=p_value<=0.01)
degs <- subset(allDiff, isHit)
#degs <- subset(allDiff, significant=="yes")
degs <- transform(degs, sample_1_overex=log2_fold_change<0)
with(degs, as.data.frame(table(sample_1, sample_2, sample_1_overex))) %>% filter(Freq >0)
ggplot(degs, aes(paste(sample_1, "vs", sample_2), fill=status)) + geom_bar() +xlab(NULL) + ylab("# DGEs") +ggtitle("DGE count summary") + coord_flip()
ggplot(degs, aes(paste(sample_1, "vs", sample_2), fill=sample_1_overex)) + geom_bar(position="dodge") + xlab(NULL) + ylab("# DGEs") + ggtitle("DGE counts by direction") + coord_flip()
## todo move up into table export section
## add gene description
if(!file.exists("geneInfo.RData")){
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
mousemart = useDataset("mmusculus_gene_ensembl", mart=useMart("ensembl"))
geneInfo <- getBM(attributes=c('ensembl_gene_id', 'external_gene_name', 'description', 'gene_biotype'), mart=mousemart);
save(geneInfo, file="geneInfo.RData")
}else{
geneInfo <- local(get(load("geneInfo.RData")))
}
gFpkmMatrix <- rownames2column(fpkmMatrix(genes(cuff)), "ensembl_gene_id")
#colnames(gFpkmMatrix) <- ifelse(is.na(sampleDic[colnames(gFpkmMatrix)]), colnames(gFpkmMatrix), sampleDic[colnames(gFpkmMatrix)])
geneFpkmWithInfo <- merge(geneInfo, gFpkmMatrix, by.x="ensembl_gene_id", all.y=T) %>% print_head()
write.delim(geneFpkmWithInfo, file="geneFpkmWithInfo.txt")
# geneFpkmWithInfo <- read.delim("geneFpkmWithInfo.txt")
#' [annotated expresssion table](geneFpkmWithInfo.txt)
degs <- merge(degs, geneInfo, by.x="gene_id", by.="ensembl_gene_id", all.x=T)
subset(degs, !duplicated(paste(sample_1, sample_2, sample_1_overex, external_gene_name))) %>% with(., as.data.frame(table(sample_1, sample_2, sample_1_overex))) %>% filter(Freq>0)
write.delim(degs, file="degs.txt")
# degs <- read.delim("degs.txt")
#' [dge table](degs.txt)
########################################################################################################################
#` ## Term enrichment
#+ echo=FALSE
require(RDAVIDWebService) ## just works if installed on non-network-drive (e.g. /tmp/)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
geneLists <- degs %>% transmute(gene_id, list_id=paste(sample_1, "vs", sample_2, "ovex", sample_1_overex, sep="_"))
## http://www.bioconductor.org/packages/release/bioc/vignettes/RDAVIDWebService/inst/doc/RDavidWS-vignette.pdf
## e.g. getClusterReport --> plot2D
save(degs, file="degs.RData")
# degs <- local(get(load("degs.RData")))
davidAnnotationChart <- function(someGenes){ ## expexted to have a column with gene_id
echo("processing list with", length(someGenes), "genes")
# someGenes <- degs$gene_id
if(length(someGenes)>1500){
someGenes <- sample(someGenes) %>% head(1500)
}
david<-DAVIDWebService$new(email="brandl@mpi-cbg.de")
# getTimeOut(david)
setTimeOut(david, 80000) ## http://www.bioconductor.org/packages/release/bioc/vignettes/RDAVIDWebService/inst/doc/RDavidWS-vignette.pdf
result<-addList(david, someGenes, idType="ENSEMBL_GENE_ID", listName=paste0("list_", sample(10000)[1]), listType="Gene")
david %>% setAnnotationCategories(c(
"GOTERM_CC_FAT",
"GOTERM_MF_FAT",
"GOTERM_BP_FAT",
"PANTHER_PATHWAY",
"REACTOME_PATHWAY",
"KEGG_PATHWAY",
"GOTERM_CC_FAT",
"GOTERM_MF_FAT",
"GOTERM_BP_FAT"
))
annoChart <-getFunctionalAnnotationChart(david)
# clusterReport <-getClusterReport(david)
return(annoChart %>% subset(select=-Genes))
}
enrResults <- degs %>% group_by(sample_1, sample_2, sample_1_overex) %>% do(davidAnnotationChart(.$gene_id))
write.delim(enrResults, file="enrResults.txt")
# enrResults <- read.delim("enrResults.txt")
#' [Enrichment Results](enrResults.txt)
sigEnrResults <- subset(enrResults, Bonferroni <0.01)
write.delim(sigEnrResults, file="sigEnrResults.txt")
# sigEnrResults <- read.delim("sigEnrResults.txt")
#' [Very Significant Terms](sigEnrResults.txt)
## plot the enrichment results
#sigEnrResults %>% group_by(Category, add=T) %>% do({
# logPlot <- . %>% ggplot(aes(Term, PValue)) +
# geom_bar(stat="identity")+coord_flip() +
# xlab("Enriched Terms") +
# ggtitle(.$Category[1]) +
# scale_y_log10()
# print(logPlot)
#})
sigEnrResults %>% do({
enrResultsGrp <- .
label <- apply(enrResultsGrp[1,1:3], 1, paste, collapse="_")
echo("processing", label)
logPlot <- enrResultsGrp %>% ggplot(aes(reorder(Term, as.integer(Category)), PValue, fill=Category)) +
geom_bar(stat="identity")+
coord_flip() +
xlab("Enriched Terms") +
ggtitle(label) +
scale_y_log10()
print(logPlot)
})
#+ include=FALSE
#ggsave2(ggplot(sigEnrResults, aes(set)) + geom_bar() + ggtitle("enriched term frequencies")) # + facet_wrap(~site_type))
#sigEnrResults <- arrange(sigEnrResults, site_type, set, -Bonferroni)
#sigEnrResults$Term <-lockFactorOrder(sigEnrResults$Term)
#ggplot(sigEnrResults, aes(Term, -log10(Bonferroni))) +coord_flip() + geom_bar() + facet_wrap(~site_type + set)
#ggplot(sigEnrResults, aes(reorder(set, -Bonferroni), -log10(Bonferroni), label=Term)) + geom_text(alpha=0.6, size=3) + ggtitle("enriched terms by set") + scale_y_log10()
#ggsave2(width=14, height=12)
#write.table(sigEnrResults, file=concat("sigEnrTerms.txt"), row.names=FALSE, sep="\t")
########################################################################################################################
#' ## Enriched KEGG Pathways
#+ echo=FALSE, warning=FALSE
require(pathview)
require(png)
with(sigEnrResults, as.data.frame(table(Category)))
keggPathways <- sigEnrResults %>%
filter(Category=="KEGG_PATHWAY") %>%
transform(kegg = colsplit(Term, "\\:", names = c('pathway_id', 'description')))
if(nrow(keggPathways)==0){
echo("no enriched kegg pathways were found in the dataset")
}
keggPathways %>% rowwise() %>% do({
curKP <- .
curKP <- keggPathways[1,]
geneData <- merge(curKP, degs) %>% transmute(gene_id, log2_fold_change) %>% column2rownames("gene_id")
## prepare gene data
pv.out <- pathview(gene.data = geneData, pathway.id = curKP$kegg.pathway_id, species = "mmu", out.suffix = curKP$kegg.description, node.sum = "mean", limit = list(gene = 3, cpd = 3), gene.idtype="ensembl")
outfile <- paste(pathway_ids[i], ".", pathway_names[i], ".png", sep = "")
ima <- readPNG(outfile)
plot.new()
lim <- par()
rasterImage(ima, lim$usr[1], lim$usr[3], lim$usr[2], lim$usr[4])
})
#+ include=FALSE
# ########################################################################################################################
# #' ## Protein-Protein Interaction Clusters using String
#
# ## see http://www.bioconductor.org/packages/release/bioc/vignettes/STRINGdb/inst/doc/STRINGdb.pdf
#
# #' We can use the string-db web service to look for protein-protein interactions.
# #' This normally results in a large hairball and many unconnected nodes and so we can look for enriched clusters.
# #' Here we plot using (high confidence interactions) enriched clusters with a node size greater than 5 proteins for our list of candidate genes showing up in at least two replicates
#
# #+ PPI plots , fig.width=30, fig.height=30, fig.retina=2, warning=FALSE, tidy=TRUE
#
# #taxTable <- list(ENSG=9606, ENSMUSG=10090)
# #taxId <- taxTable[[degs$gene_id[1] %>% ac() %>% str_extract("^([A-z]+)")]]
# #
# #require.auto(STRINGdb)
# #
# #string_db <- STRINGdb$new(score_threshold=400, species=taxId, input_directory="/local2/user_data/brandl/data/stringr") ## score threshold default is 400
# #example1_mapped <- string_db$map( summary_allgids_df_sighit_gt1, "supplier_gene_symbol", species= removeUnmappedRows = TRUE )
# #clustersList <- string_db$get_clusters(example1_mapped$STRING_id)
# #for(network in clustersList)
# #{
# # if(length(network)>5)
# # {
# # string_db$plot_network(network, add_link=FALSE)
# # }
# #}
#