Newer
Older
#!/usr/bin/env Rscript
#+ include=FALSE
suppressMessages(require(docopt))
doc <- '
Convert a featureCounts results matrix into a dge-report using deseq2
Usage: region_dba.R [options] <count_matrix>
Options:
--contrasts=<tab_delim_table> Table with sample pairs for which dge analysis should be performed
--qcutoff <qcutoff> Use a q-value cutoff of 0.01 instead of a q-value cutoff [default: 0.01]
--pcutoff <pcutoff> Override q-value filter and filter by p-value instead
--min_count <min_count> Minimal expression in any of the sample to be included in the final result list [default: 1]
'
opts <- docopt(doc, commandArgs(TRUE))
## opts <- docopt(doc, "--pcutoff 0.05 --contrasts ../time_contrasts.txt ../peak_clusters_tss5kb.count_matrix.txt")
## opts <- docopt(doc, "countMatrix.txt")
require(knitr)
require(DESeq2)
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/core_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/ggplot_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/bio/diffex_commons.R")
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#require.auto(gplots)
#+ results='asis', echo=FALSE
cat('
<link rel="stylesheet" type="text/css" href="http://cdn.datatables.net/1.10.5/css/jquery.dataTables.min.css">
<script type="text/javascript" charset="utf8" src="http://code.jquery.com/jquery-2.1.2.min.js"></script>
<script type="text/javascript" charset="utf8" src="http://cdn.datatables.net/1.10.5/js/jquery.dataTables.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
// alert("test")
//$("table").DataTable();
//$("table").DataTable();
//$("#tab_id").DataTable();
$(".dtable").DataTable();
} );
</script>
')
count_matrix_file <- opts$count_matrix
contrasts_file <- opts$contrasts
pcutoff <- if(is.null(opts$pcutoff)) NULL else as.numeric(opts$pcutoff)
qcutoff <- if(is.numeric(pcutoff)) NULL else as.numeric(opts$qcutoff)
if(is.numeric(pcutoff)) opts$qcutoff <- NULL
########################################################################################################################
#' # Load annotation data
## load transcriptome annotations needed for results annotation
geneInfo <- quote({
mart <- biomaRt::useDataset("drerio_gene_ensembl", mart = biomaRt::useMart("ensembl"))
c("ensembl_gene_id", "external_gene_name", "description", "chromosome_name", "start_position", "end_position") %>%
biomaRt::getBM(mart=mart)
}) %>% cache_it("geneInfo")
########################################################################################################################
#' # Differential Binding Analysis
#' Working Directory: `r getwd()`
resultsBase <- count_matrix_file %>% basename() %>% trim_ext(".txt") %>% trim_ext(".count_matrix")
countData <- read.delim(count_matrix_file)
names(countData) <- names(countData) %>% str_replace("[.]1", "")
countMatrix <- countData %>% column2rownames("ensembl_gene_id") %>% as.matrix()
#' Apply expression filter
nrow(countMatrix)
countMatrix %<>% filterByExpression()
nrow(countMatrix)
#filterByExpression <- function(fpkmMat, min_count=1, logMode=F){
# if(logMode) fpkmMat<-log10(fpkmMat+1) ## add a pseudocount
#
# geneMax <- apply(fpkmMat, 1, max)
#
# fpkmMat[geneMax>min_count,]
#}
#countMatrixFilt <- filterByExpression(countMatrix, min_count=50)
#' See deseq reference [docs](http://master.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf) for details
#' To understand fold-change shrinking and estimation check out
#' [Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2](http://genomebiology.com/2014/15/12/550/abstract)
## todo expose as argument
get_sample_from_replicate <- function(repName) str_match(repName, "(.*)_[0-9]{1}")[,2]
#' Define or load a contrasts matrix
if(!is.null(contrasts_file)){
contrasts <- read.delim(contrasts_file, header=T) %>% fac2char()
}else{
contrasts <- data.frame(sample=get_sample_from_replicate(colnames(countMatrix))) %>% distinct() %>%
merge(.,., suffixes=c("_1", "_2"), by=NULL) %>%
filter(ac(sample_1)>ac(sample_2)) %>%
# filter(ac(sample_1)!=ac(sample_2)) %>%
fac2char()
write.delim(contrasts, "dba_contrasts.txt")
}
contrasts %>% kable()
########################################################################################################################
#' ## Perform Differential Expression Analysis
#normalizationFactors(dds)
## sizeFactor R help:sigEnrResults
#dds <- makeExampleDESeqDataSet()
#dds <- estimateSizeFactors( dds )
#sizeFactors(dds)
## try again but now use lambda normalization
## see "3.11 Sample-/gene-dependent normalization factors" in the DEseq2 manual for details
colData <- data.frame(condition=colnames(countMatrix) %>% get_sample_from_replicate)
dds <- DESeqDataSetFromMatrix(countMatrix, colData, formula(~ condition))
#' # Custom Lambda Normalization
#' See https://www.biostars.org/p/79978/
sizeFactors(dds) %>% set_names(colnames(countMatrix)) %>% melt() %>% rownames2column("sample") %>% ggplot(aes(sample, value)) + geom_bar(stat="identity") + ggtitle("deseq size factors")
##' From the DESeq docs about how size factors are used: The sizeFactors vector assigns to each column of the count matrix a value, the size factor, such that count values in the columns can be brought to a common scale by dividing by the corresponding size factor.
##' This means that counts are divied by size factors. So let's now load the lambda libraies and replace the predefined size factors with our custom ones
#' From DESeq manual: The regularized log transformation is preferable to the variance stabilizing transformation if the size factors vary widely.
#' Run Deseq Test
#dds <- DESeq(dds, fitType='local', betaPrior=FALSE)
#dds <- DESeq(dds, fitType='local')
dds <- DESeq(dds)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#res <- results(dds)
#resultsNames(dds)
#' Model Overview
#+ results='asis'
summary(results(dds))
## extract all de-sets according to our contrasts model
deResults <- adply(contrasts, 1, splat(function(sample_1, sample_2){
# browser()
results(dds, contrast=c("condition",sample_1,sample_2)) %>%
rownames2column("ensembl_gene_id") %>%
as.data.frame() %>%
## see http://rpackages.ianhowson.com/bioc/DESeq2/man/results.html when using contrasts argument
rename(s1_over_s2_logfc=log2FoldChange) %>%
mutate(sample_1=sample_1, sample_2=sample_2)
}))
deResults %>% ggplot(aes(s1_over_s2_logfc)) +
geom_histogram(binwidth=0.1) +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0, color="blue") +
xlim(-2,2) +
ggtitle("sample1 over sampl2 logFC ")
#' ## Significnce of differential binding
deResults %>% ggplot(aes(pvalue)) +
geom_histogram() +
xlim(0,1) +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0.01, slope=1, color="blue") +
ggtitle("p-value distributions") #+ scale_x_log10()
deResults %>% ggplot(aes(padj)) +
geom_histogram() +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0.01, slope=1, color="blue") +
ggtitle("Adjusted p-value distributions") #+ scale_x_log10()
#' Set hit criterion
#+ results='asis'
if(!is.null(qcutoff)){
echo("Using q-value cutoff of", qcutoff)
deResults %<>% transform(is_hit=padj<=qcutoff)
}else{
echo("Using p-value cutoff of", pcutoff)
deResults %<>% transform(is_hit=pvalue<=pcutoff)
}
#deResults %<>% mutate(is_hit=pvalue<0.05)
deResults %<>% mutate(s1_overex=s1_over_s2_logfc>1)
normCounts <- counts(dds,normalized=TRUE) %>%
# set_names(colData(dds)$condition) %>% rownames2column("ensembl_gene_id")
set_names(colnames(countMatrix)) %>% rownames2column("ensembl_gene_id")
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
## .. should be same as input
#filter(countData, ensembl_gene_id=="ENSDARG00000000001")
#' # MA and Volcano plots
# deseq approach
# plotMA(deResults, main="DESeq2", ylim=c(-2,2))
## facet plot
maData <- normCounts %>%
gather(sample, norm_count, -ensembl_gene_id) %>%
merge(.,., by="ensembl_gene_id", suffixes=c("_1", "_2")) %>%
# filter(ac(sample_1)<ac(sample_2)) %>%
# add diffex status
merge(deResults)
#+ fig.width=16, fig.height=14
maData %>% ggplot(aes(0.5*log2(norm_count_1*norm_count_2), log2(norm_count_2/norm_count_1), color=pvalue<0.05)) +
geom_point(alpha=0.3) +
geom_hline(yintercept=0, color="red") +
facet_grid(sample_1 ~ sample_2)
##Volcano plots
hitCounts <- filter(deResults, is_hit) %>%
count(sample_1, sample_2, sample_1_overex=s1_over_s2_logfc>0) %>%
rename(hits=n) %>%
merge(data.frame(sample_1_overex=c(T,F), x_pos=c(-2.5,2.5)))
#+ fig.width=16, fig.height=14
deResults %>% ggplot(aes(s1_over_s2_logfc, -log10(pvalue), color=is_hit)) +
geom_jitter(alpha=0.3, position = position_jitter(height = 0.2)) +
# theme_bw() +
xlim(-3,3) +
scale_color_manual(values = c("TRUE"="red", "FALSE"="black")) +
# ggtitle("Insm1/Ctrl") +
## http://stackoverflow.com/questions/19764968/remove-point-transparency-in-ggplot2-legend
guides(colour = guide_legend(override.aes = list(alpha=1))) +
## tweak axis labels
xlab(expression(log[2]("x/y"))) +
ylab(expression(-log[10]("p value"))) +
## add hit couts
geom_text(aes(label=hits, x=x_pos), y=2, color="red", size=10, data=hitCounts) +
facet_grid(sample_1 ~ sample_2)
# Define absolute binding categories
#rawCounts <- counts(dds,normalized=F) %>%
# set_names(colData(dds)$condition) %>% rownames2column("ensembl_gene_id")
#ggplot(rawCounts, aes(H3HA_Sphere)) + geom_histogram() + scale_x_log10() + ggtitle("raw H3HA_Sphere counts distribution")
#require.auto(Hmisc)
#
#bindCats <- rawCounts %>% transmute(ensembl_gene_id, bind_category=cut2(H3HA_Sphere, cuts=c(10, 100)))
#with(bindCats, as.data.frame(table(bind_category))) %>% kable()
# Export the complete dataset for later analysis
deAnnot <- deResults %>%
inner_join(normCounts) %>%
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
write.delim(deAnnot, file=paste0(resultsBase, ".dba_results.txt"))
#' [deAnnot](`r paste0(resultsBase, ".dba_results.txt")`)
#' ## Hits Summary
## Extract hits from deseq results
degs <- deAnnot %>% filter(is_hit)
ggplot(degs, aes(paste(sample_1, "vs", sample_2))) + geom_bar() +xlab(NULL) + ylab("# DBGs") + ggtitle("DBG count summary") + coord_flip()
degs %>%
ggplot(aes(paste(sample_1, "vs", sample_2), fill=s1_overex)) +
geom_bar(position="dodge") +
xlab(NULL) + ylab("# DBGs") +
ggtitle("DBG count summary by direction of expression") +
coord_flip()
# Export DBA genes
## disabled because we just subset the annotated data now to define degs
#degsAnnot <- degs %>%
# inner_join(normCounts) %>%
# left_join(geneInfo) %>%
# left_join(bindCats)
degs %>% write.delim(file=paste0(resultsBase, ".diffbind_genes.txt"))
#' [degs](`r paste0(resultsBase, ".diffbind_genes.txt")`)
## render interactive hit browser
#+results='asis'
degs %>%
left_join(geneInfo) %>%
mutate(
igv=paste0("<a href='http://localhost:60151/goto?locus=", chromosome_name,":", start_position, "-", end_position, "'>IGV</a>")
) %>%
select(s1_over_s2_logfc, pvalue, ensembl_gene_id, sample_1, sample_2, external_gene_name, description, igv) %>%
kable("html", table.attr = "class='dtable'", escape=F)
########################################################################################################################
#+ echo=FALSE
#' This analysis was performed using [David](http://david.abcc.ncifcrf.gov/). The following ontologies were tested: `r paste(ontologies, collapse=', ')`
geneLists <- degs %>%
transmute(ensembl_gene_id, list_id=paste(sample_1, "vs", sample_2))
if(nrow(contrasts)<4){
geneLists <- rbind_list(
geneLists,
degs %>% filter(s1_overex) %>% transmute(ensembl_gene_id, list_id=paste(sample_1, ">", sample_2)),
degs %>% filter(!s1_overex) %>% transmute(ensembl_gene_id, list_id=paste(sample_1, "<", sample_2))
)
}
## additional overlaps before doing the intersection analysis
geneLists %>% count(list_id) %>% kable()
intersectLists <- function(geneLists, listIdA, listIdB, intersectListId) {
commonGenes <- setdiff(filter(geneLists, list_id==listIdA)$ensembl_gene_id, filter(geneLists, list_id==listIdB)$ensembl_gene_id)
data.frame(list_id=intersectListId, ensembl_gene_id=commonGenes)
}
geneLists %<>% group_by(list_id)
save(geneLists, file=".enrGeneLists.RData")
# geneLists <- local(get(load("enrGeneLists.RData")))
## redefine opts arguments and tweak knitr options
opts_knit$set(root.dir = getwd())
commandArgs <- function(x) c(paste("--overlay_expr_data ", count_matrix_file, " enrGeneLists.RData"))
#source("/home/brandl/mnt/mack/bioinfo/scripts/ngs_tools/dev/common/david_enrichment.R")
# child='/home/brandl/mnt/mack/bioinfo/scripts/ngs_tools/dev/common/david_enrichment.Rmd'