Newer
Older
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fem_sol import frap_solver"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m = ['Meshes/multi_drop_gauss.xml', 'Meshes/multi_drop_gauss_med.xml',\n",
" 'Meshes/multi_drop_gauss_far.xml']\n",
"point_lists = [[[4, 4.5, 0.5], [4, 3.5, 0.5], [3.5, 4, 0.5], [4.5, 4, 0.5]],\n",
" [[4, 5, 0.5], [4, 3, 0.5], [3, 4, 0.5], [5, 4, 0.5]],\n",
" [[4, 5.5, 0.5], [4, 2.5, 0.5], [2.5, 4, 0.5], [5.5, 4, 0.5]]]\n",
"f_i = []\n",
"for j in range(len(m)):\n",
" f = frap_solver([], m[j], name=str(j), point_list=point_lists[j],\n",
" T=3)\n",
" f.solve_frap()\n",
" f_i.append(f)"

Lars Hubatsch
committed
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"font = {'family' : 'normal',\n",
" 'weight' : 'normal',\n",
" 'size' : 12}\n",
"import matplotlib\n",
"matplotlib.rc('font', **font)\n",
"\n",
"def make_graph_pretty(xlab, ylab, loc=0, markerfirst=True, handlelength=None):\n",
" color1 = 'black'#'darkorange'\n",
" color2 = (0, 0, 0)\n",
" color2 = (1, 1, 1)\n",
" ax = plt.gca()\n",
" ax.tick_params(axis='x', colors=color1, which='both')\n",
" ax.tick_params(axis='y', colors=color1, which='both')\n",
" plt.xlabel(xlab, color=color1)\n",
" plt.ylabel(ylab, color=color1)\n",
" ax.spines['left'].set_color(color1)\n",
" ax.spines['bottom'].set_color(color1)\n",
" # Hide the right and top spines\n",
" ax.spines['right'].set_visible(False)\n",
" ax.spines['top'].set_visible(False)\n",
" ax.set_facecolor(color2)\n",
" plt.gcf().subplots_adjust(bottom=0.17, left=0.15)\n",
" plt.legend(frameon=False, loc=loc, labelspacing=0.1,\n",
" markerfirst=markerfirst, handlelength=handlelength)\n",
"\n",
"for i in range(len(cs[0])):\n",
" plt.plot([np.mean(x[1:49])/0.8 for x in cs[0][0:i]], label='dist=0.5')\n",
" plt.plot([np.mean(x[1:49])/0.8 for x in cs[1][0:i]], label='dist=1')\n",
" plt.plot([np.mean(x[1:49])/0.8 for x in cs[2][0:i]], label='dist=1.5')\n",
" plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n",
" plt.ylim((0, 1.1))\n",
" plt.xlim((0, 100))\n",
" make_graph_pretty('t (a.u.)', 'intensity (a.u)', loc=4)\n",
" plt.savefig('img_'+str(i)+'.png', dpi=300)\n",
" plt.show()"

Lars Hubatsch
committed
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}