Newer
Older
/*
* CartDecomposition.hpp
*
* Created on: Aug 15, 2014
* Author: Pietro Incardona
*/
#ifndef CARTDECOMPOSITION_HPP
#define CARTDECOMPOSITION_HPP
#include "config.h"
#include "VCluster.hpp"
#include "Graph/CartesianGraphFactory.hpp"
#include <vector>
#include <initializer_list>
#include "SubdomainGraphNodes.hpp"
#include "metis_util.hpp"
#include "dec_optimizer.hpp"
#include "Space/Shape/Box.hpp"
#include <unordered_map>
#include "NN/CellList/CellList.hpp"
#include "common.hpp"
#include "ie_loc_ghost.hpp"
#include "ie_ghost.hpp"
#include "nn_processor.hpp"
#define CARTDEC_ERROR 2000lu
/**
* \brief This class decompose a space into subspaces
*
* \tparam dim is the dimensionality of the physical domain we are going to decompose.
* \tparam T type of the space we decompose, Real, Integer, Complex ...
* \tparam Memory Memory factory used to allocate memory
* \tparam Domain Structure that contain the information of your physical domain
*
* Given an N-dimensional space, this class decompose the space into a Cartesian grid of small
* sub-sub-domain. At each sub-sub-domain is assigned an id that identify which processor is
* going to take care of that part of space (in general the space assigned to a processor is
* simply connected), a second step merge several sub-sub-domain with same id into bigger region
* sub-domain with the id. Each sub-domain has an extended space called ghost part
*
* Assuming that VCluster.getProcessUnitID(), equivalent to the MPI processor rank, return the processor local
* processor id, we define
*
* * local processor: processor rank
* * local sub-domain: sub-domain given to the local processor
* * external ghost box: (or ghost box) are the boxes that compose the ghost space of the processor, or the
* boxes produced expanding every local sub-domain by the ghost extension and intersecting with the sub-domain
* of the other processors
* * Near processors are the processors adjacent to the local processor, where with adjacent we mean all the processor
* that has a non-zero intersection with the ghost part of the local processor, or all the processors that
* produce non-zero external boxes with the local processor, or all the processor that should communicate
* in case of ghost data synchronization
* * internal ghost box: is the part of ghost of the near processor that intersect the space of the
* processor, or the boxes produced expanding the sub-domain of the near processors with the local sub-domain
* * Near processor sub-domain: is a sub-domain that live in the a near (or contiguous) processor
* * Near processor list: the list of all the near processor of the local processor (each processor has a list
* of the near processor)
* * Local ghosts interal or external are all the ghosts that does not involve inter-processor communications
*
* \see calculateGhostBoxes() for a visualization of internal and external ghost boxes
* ### Create a Cartesian decomposition object on a Box space, distribute, calculate internal and external ghost boxes
* \snippet CartDecomposition_unit_test.hpp Create CartDecomposition
*
template<unsigned int dim, typename T, typename Memory=HeapMemory, template<unsigned int, typename> class Domain=Box>
class CartDecomposition : public ie_loc_ghost<dim,T>, public nn_prcs<dim,T> , public ie_ghost<dim,T>
//! Type of the domain we are going to decompose
typedef T domain_type;
//! It simplify to access the SpaceBox element
typedef SpaceBox<dim,T> Box;
private:
//! This is the key type to access data_s, for example in the case of vector
typedef typename openfpm::vector<SpaceBox<dim,T>,Memory,openfpm::vector_grow_policy_default,openfpm::vect_isel<SpaceBox<dim,T>>::value >::access_key acc_key;
openfpm::vector<SpaceBox<dim,T>> sub_domains;
//! for each sub-domain, contain the list of the neighborhood processors
openfpm::vector<openfpm::vector<long unsigned int> > box_nn_processor;
//! Structure that contain for each sub-sub-domain box the processor id
//! Structure that store the cartesian grid information
grid_sm<dim,void> gr;
//! Structure that decompose your structure into cell without creating them
//! useful to convert positions to CellId or sub-domain id in this case
CellDecomposer_sm<dim,T> cd;
//! rectangular domain to decompose
Domain<dim,T> domain;
//! Box Spacing
T spacing[dim];
//! Runtime virtual cluster machine
Vcluster & v_cl;
// Smallest subdivision on each direction
::Box<dim,T> ss_box;
::Box<dim,T> bbox;
// Heap memory receiver
HeapMemory hp_recv;
// vector v_proc
openfpm::vector<size_t> v_proc;
// Receive counter
size_t recv_cnt;
// reference counter of the object in case is shared between object
long int ref_cnt;
// Save the ghost boundaries
Ghost<dim,T> ghost;
/*! \brief Constructor, it decompose and distribute the sub-domains across the processors
* \param v_cl Virtual cluster, used internally for communications
*/
void CreateDecomposition(Vcluster & v_cl)
{
#ifdef SE_CLASS1
if (&v_cl == NULL)
{
std::cerr << __FILE__ << ":" << __LINE__ << " error VCluster instance is null, check that you ever initialized it \n";
ACTION_ON_ERROR()
}
#endif
// Calculate the total number of box and and the spacing
// on each direction
// Get the box containing the domain
SpaceBox<dim,T> bs = domain.getBox();
for (unsigned int i = 0; i < dim ; i++)
{
// Calculate the spacing
spacing[i] = (bs.getHigh(i) - bs.getLow(i)) / gr.size(i);
}
// Here we use METIS
// Create a cartesian grid graph
CartesianGraphFactory<dim,Graph_CSR<nm_part_v,nm_part_e>> g_factory_part;
Graph_CSR<nm_part_v,nm_part_e> gp = g_factory_part.template construct<NO_EDGE,T,dim-1>(gr.getSize(),domain);
// Get the number of processing units
size_t Np = v_cl.getProcessingUnits();
// Get the processor id
long int p_id = v_cl.getProcessUnitID();
// Convert the graph to metis
Metis<Graph_CSR<nm_part_v,nm_part_e>> met(gp,Np);
// fill the structure that store the processor id for each sub-domain
// Optimize the decomposition creating bigger spaces
// And reducing Ghost over-stress
dec_optimizer<dim,Graph_CSR<nm_part_v,nm_part_e>> d_o(gp,gr.getSize());
// set of Boxes produced by the decomposition optimizer
openfpm::vector<::Box<dim,size_t>> loc_box;
d_o.template optimize<nm_part_v::sub_id,nm_part_v::id>(gp,p_id,loc_box,box_nn_processor);
// Initialize ss_box and bbox
if (loc_box.size() >= 0)
{
SpaceBox<dim,size_t> sub_dc = loc_box.get(0);
SpaceBox<dim,T> sub_d(sub_dc);
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
ss_box = sub_d;
for (size_t s = 1 ; s < loc_box.size() ; s++)
SpaceBox<dim,size_t> sub_dc = loc_box.get(s);
SpaceBox<dim,T> sub_d(sub_dc);
// re-scale and add spacing (the end is the starting point of the next domain + spacing)
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
// Calculate the bound box
bbox.enclose(sub_d);
// Create the smallest box contained in all sub-domain
ss_box.contained(sub_d);
nn_prcs<dim,T>::create(box_nn_processor, sub_domains);
nn_prcs<dim,T>::refine_ss_box(ss_box);
// fine_s structure contain the processor id for each sub-sub-domain
// with sub-sub-domain we mean the sub-domain decomposition before
// running dec_optimizer (before merging sub-domains)
auto it = gp.getVertexIterator();
while (it.isNext())
{
size_t key = it.get();
// fill with the fine decomposition
fine_s.get(key) = gp.template vertex_p<nm_part_v::id>(key);
++it;
}
Initialize_geo_cell_lists();
}
/*! \brief Initialize geo_cell lists
*
*
*
*/
void Initialize_geo_cell_lists()
{
// Get the smallest sub-division on each direction
::Box<dim,T> unit = getSmallestSubdivision();
// Get the processor bounding Box
::Box<dim,T> bound = getProcessorBounds();
size_t div[dim];
for (size_t i = 0 ; i < dim ; i++)
div[i] = (size_t)((bound.getHigh(i) - bound.getLow(i)) / unit.getHigh(i));
// Create shift
Point<dim,T> orig;
// p1 point of the Processor bound box is the shift
for (size_t i = 0 ; i < dim ; i++)
orig.get(i) = bound.getLow(i);
// Initialize the geo_cell structure
ie_ghost<dim,T>::Initialize_geo_cell(domain,div,orig);
}
/*! \brief Create the subspaces that decompose your domain
*
*/
void CreateSubspaces()
{
// Create a grid where each point is a space
grid_sm<dim,void> g(div);
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// create a grid_key_dx iterator
grid_key_dx_iterator<dim> gk_it(g);
// Divide the space into subspaces
while (gk_it.isNext())
{
//! iterate through all subspaces
grid_key_dx<dim> key = gk_it.get();
//! Create a new subspace
SpaceBox<dim,T> tmp;
//! fill with the Margin of the box
for (int i = 0 ; i < dim ; i++)
{
tmp.setHigh(i,(key.get(i)+1)*spacing[i]);
tmp.setLow(i,key.get(i)*spacing[i]);
}
//! add the space box
sub_domains.add(tmp);
// add the iterator
++gk_it;
}
}
public:
//! Increment the reference counter
void incRef()
{ref_cnt++;}
//! Decrement the reference counter
void decRef()
{ref_cnt--;}
//! Return the reference counter
long int ref()
{
return ref_cnt;
}
/*! \brief Cartesian decomposition constructor
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
CartDecomposition(Vcluster & v_cl)
:nn_prcs<dim,T>(v_cl),v_cl(v_cl),ref_cnt(0)
{
// Reset the box to zero
bbox.zero();
}
/*! \brief Cartesian decomposition copy constructor
*
* \param cart object to copy
*
*/
CartDecomposition(const CartDecomposition<dim,T,Memory,Domain> & cart)
:nn_prcs<dim,T>(cart.v_cl),v_cl(cart.v_cl),ref_cnt(0)
{
this->operator=(cart);
}
/*! \brief Cartesian decomposition copy constructor
*
* \param cart object to copy
*
*/
CartDecomposition(CartDecomposition<dim,T,Memory,Domain> && cart)
:nn_prcs<dim,T>(cart.v_cl),v_cl(cart.v_cl),ref_cnt(0)
{
this->operator=(cart);
}
//! Cartesian decomposition destructor
~CartDecomposition()
{}
/*! \brief class to select the returned id by ghost_processorID
*
*/
class box_id
{
public:
/*! \brief Return the box id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return box id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return b_id;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class processor_id
{
public:
/*! \brief Return the processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return processor id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return p.proc;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class lc_processor_id
{
public:
/*! \brief Return the near processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return local processor id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return p.lc_proc;
}
};
*
* Example: Processor 10 calculate
* B8_0 B9_0 B9_1 and B5_0
*
*
+----------------------------------------------------+
| |
| Processor 8 |
| Sub-domain 0 +-----------------------------------+
| | |
| | |
++--------------+---+---------------------------+----+ Processor 9 |
| | | B8_0 | | Subdomain 0 |
| +------------------------------------+ |
| | | | | |
| | | XXXXXXXXXXXXX XX |B9_0| |
| | B | X Processor 10 X | | |
| Processor 5 | 5 | X Sub-domain 0 X | | |
| Subdomain 0 | _ | X X +----------------------------------------+
| | 0 | XXXXXXXXXXXXXXXX | | |
| | | | | |
| | | | | Processor 9 |
| | | |B9_1| Subdomain 1 |
| | | | | |
| | | | | |
| | | | | |
+--------------+---+---------------------------+----+ |
| |
+-----------------------------------+
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
+----------------------------------------------------+
| |
| Processor 8 |
| Sub-domain 0 +-----------------------------------+
| +---------------------------------------------+ |
| | G8_0 | | |
++--------------+------------------------------------+ | Processor 9 |
| | | | | Subdomain 0 |
| | | |G9_0| |
| | | | | |
| | | XXXXXXXXXXXXX XX | | |
| | | X Processor 10 X | | |
| Processor|5 | X Sub-domain 0 X | | |
| Subdomain|0 | X X +-----------------------------------+
| | | XXXXXXXXXXXXXXXX | | |
| | G | | | |
| | 5 | | | Processor 9 |
| | | | | | Subdomain 1 |
| | 0 | |G9_1| |
| | | | | |
| | | | | |
+--------------+------------------------------------+ | |
| | | |
+----------------------------------------+----+------------------------------+
*
*
*
* \param ghost margins for each dimensions (p1 negative part) (p2 positive part)
*
^ p2[1]
|
|
+----+----+
| |
| |
p1[0]<-----+ +----> p2[0]
| |
| |
+----+----+
|
v p1[1]
{
#ifdef DEBUG
// the ghost margins are assumed to be smaller
// than one sub-domain
for (size_t i = 0 ; i < dim ; i++)
{
if (fabs(ghost.template getLow(i)) >= ss_box.getHigh(i) || ghost.template getHigh(i) >= ss_box.getHigh(i))
std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " : Ghost are bigger than one sub-domain" << "\n";
}
}
#endif
// Intersect all the local sub-domains with the sub-domains of the contiguous processors
// create the internal structures that store ghost information
ie_ghost<dim,T>::create_box_nn_processor_ext(v_cl,ghost,sub_domains,box_nn_processor,*this);
ie_ghost<dim,T>::create_box_nn_processor_int(v_cl,ghost,sub_domains,box_nn_processor,*this);
// ebox must come after ibox (in this case)
ie_loc_ghost<dim,T>::create_loc_ghost_ibox(ghost,sub_domains);
ie_loc_ghost<dim,T>::create_loc_ghost_ebox(ghost,sub_domains);
// get the smallest sub-domain dimension on each direction
for (size_t i = 0 ; i < dim ; i++)
{
if (fabs(ghost.template getLow(i)) >= ss_box.getHigh(i) || ghost.template getHigh(i) >= ss_box.getHigh(i))
std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " : Ghost are bigger than one sub-domain" << "\n";
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/*! \brief It create another object that contain the same decomposition information but with different ghost boxes
*
* \param g ghost
*
* \return a duplicated decomposition with different ghost boxes
*
*/
CartDecomposition<dim,T,Memory,Domain> duplicate(Ghost<dim,T> & g)
{
CartDecomposition<dim,T,Memory,Domain> cart(v_cl);
cart.box_nn_processor = box_nn_processor;
cart.sub_domains = sub_domains;
cart.fine_s = fine_s;
cart.gr = gr;
cart.cd = cd;
cart.domain = domain;
std::copy(spacing,spacing+3,cart.spacing);
//! Runtime virtual cluster
cart.v_cl = v_cl;
cart.bbox = bbox;
cart.ss_box = ss_box;
cart.ghost = g;
nn_prcs<dim,T>::create(box_nn_processor, sub_domains);
calculateGhostBoxes();
Initialize_geo_cell_lists();
return cart;
}
/*! \brief It create another object that contain the same information and act in the same way
*
* \return a duplicated decomposition
*
*/
CartDecomposition<dim,T,Memory,Domain> duplicate()
{
CartDecomposition<dim,T,Memory,Domain> cart(v_cl);
(static_cast<ie_loc_ghost<dim,T>*>(&cart))->operator=(static_cast<ie_loc_ghost<dim,T>>(*this));
(static_cast<nn_prcs<dim,T>*>(&cart))->operator=(static_cast<nn_prcs<dim,T>>(*this));
(static_cast<ie_ghost<dim,T>*>(&cart))->operator=(static_cast<ie_ghost<dim,T>>(*this));
cart.sub_domains = sub_domains;
cart.box_nn_processor = box_nn_processor;
cart.fine_s = fine_s;
cart.gr = gr;
cart.cd = cd;
cart.domain = domain;
std::copy(spacing,spacing+3,cart.spacing);
//! Runtime virtual cluster
cart.v_cl = v_cl;
cart.ghost = ghost;
cart.bbox = bbox;
cart.ss_box = ss_box;
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
return cart;
}
/*! \brief Copy the element
*
* \param cart element to copy
*
*/
CartDecomposition<dim,T,Memory,Domain> & operator=(const CartDecomposition & cart)
{
static_cast<ie_loc_ghost<dim,T>*>(this)->operator=(static_cast<ie_loc_ghost<dim,T>>(cart));
static_cast<nn_prcs<dim,T>*>(this)->operator=(static_cast<nn_prcs<dim,T>>(cart));
static_cast<ie_ghost<dim,T>*>(this)->operator=(static_cast<ie_ghost<dim,T>>(cart));
sub_domains = cart.sub_domains;
box_nn_processor = cart.box_nn_processor;
fine_s = cart.fine_s;
gr = cart.gr;
cd = cart.cd;
domain = cart.domain;
std::copy(cart.spacing,cart.spacing+3,spacing);
//! Runtime virtual cluster
v_cl = cart.v_cl;
ghost = cart.ghost;
bbox = cart.bbox;
ss_box = cart.ss_box;
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
return *this;
}
/*! \brief Copy the element, move semantic
*
* \param cart element to copy
*
*/
CartDecomposition<dim,T,Memory,Domain> & operator=(CartDecomposition && cart)
{
static_cast<ie_loc_ghost<dim,T>*>(this)->operator=(static_cast<ie_loc_ghost<dim,T>*>(cart));
static_cast<nn_prcs<dim,T>*>(this)->operator=(static_cast<nn_prcs<dim,T>*>(cart));
static_cast<ie_ghost<dim,T>*>(this)->operator=(static_cast<ie_ghost<dim,T>*>(cart));
sub_domains.swap(cart.sub_domains);
box_nn_processor.swap(cart.box_nn_processor);
fine_s.swap(cart.fine_s);
gr = cart.gr;
cd = cart.cd;
domain = cart.domain;
std::copy(cart.spacing,cart.spacing+3,spacing);
//! Runtime virtual cluster
v_cl = cart.v_cl;
ghost = cart.ghost;
cart.bbox = bbox;
cart.ss_box = ss_box;
return *this;
}
/*! \brief The default grid size
*
* The default grid is always an isotropic grid that adapt with the number of processors,
* it define in how many cell it will be divided the space for a particular required minimum
* number of sub-domain
*
*/
static size_t getDefaultGrid(size_t n_sub)
{
// Calculate the number of sub-sub-domain on
// each dimension
return openfpm::math::round_big_2(pow(n_sub,1.0/dim));
}
/*! \brief Given a point return in which processor the particle should go
template<typename Mem> size_t inline processorID(encapc<1, Point<dim,T>, Mem> p)
/*! \brief Get the smallest subdivision of the domain on each direction
*
* \return a box p1 is set to zero
*
*/
const ::Box<dim,T> & getSmallestSubdivision()
{
return ss_box;
}
/*! \brief Given a point return in which processor the particle should go
size_t inline processorID(const T (&p)[dim]) const
/*! \brief Set the parameter of the decomposition
*
* \param div_ storing into how many domain to decompose on each dimension
* \param domain_ domain to decompose
*
*/
void setParameters(const size_t (& div_)[dim], Domain<dim,T> domain_, Ghost<dim,T> ghost = Ghost<dim,T>())
//! Create the decomposition
CreateDecomposition(v_cl);
}
/*! \brief Get the number of local sub-domains
*
* \return the number of sub-domains
*
*/
size_t getNLocalHyperCube()
{
return sub_domains.size();
}
* \param i (each local processor can have more than one sub-domain)
* \return the sub-domain
*
*/
SpaceBox<dim,T> getLocalHyperCube(size_t lc)
{
// Create a space box
SpaceBox<dim,T> sp;
// fill the space box
for (size_t k = 0 ; k < dim ; k++)
{
// create the SpaceBox Low and High
sp.setLow(k,sub_domains.template get<Box::p1>(lc)[k]);
sp.setHigh(k,sub_domains.template get<Box::p2>(lc)[k]);
}
return sp;
}
/*! \brief Get the local sub-domain with ghost extension
*
* \param i (each local processor can have more than one sub-domain)
* \return the sub-domain
*
*/
SpaceBox<dim,T> getSubDomainWithGhost(size_t lc)
{
// Create a space box
SpaceBox<dim,T> sp = sub_domains.get(lc);
// enlarge with ghost
sp.enlarge(ghost);
return sp;
}
/*! \brief Return the structure that store the physical domain
*
* \return The physical domain
*
*/
Domain<dim,T> & getDomain()
{
return domain;
}
/*! \brief Check if the particle is local
*
* \param p object position
template<typename Mem> bool isLocal(const encapc<1, Point<dim,T>, Mem> p) const
return processorID<Mem>(p) == v_cl.getProcessUnitID();
bool isLocal(const T (&pos)[dim]) const
return processorID(pos) == v_cl.getProcessUnitID();
}
/*! \brief Return the bounding box containing union of all the sub-domains for the local processor
*
* \return The bounding box
*
*/
::Box<dim,T> & getProcessorBounds()
{
return bbox;
}
////////////// Functions to get decomposition information ///////////////
/*! \brief Write the decomposition as VTK file
*
* The function generate several files
*
* * subdomains_X.vtk domain for the local processor (X) as union of sub-domain
* * subdomains_adjacent_X.vtk sub-domains adjacent to the local processor (X)
* * internal_ghost_X.vtk Internal ghost boxes for the local processor (X)
* * external_ghost_X.vtk External ghost boxes for the local processor (X)
* * local_internal_ghost_X.vtk internal local ghost boxes for the local processor (X)
* * local_external_ghost_X.vtk external local ghost boxes for the local processor (X)
*
* \param output directory where to write the files
*
*/
bool write(std::string output) const
{
//! subdomains_X.vtk domain for the local processor (X) as union of sub-domain
VTKWriter<openfpm::vector<::SpaceBox<dim,T>>,VECTOR_BOX> vtk_box1;
vtk_box1.add(sub_domains);
vtk_box1.write(output + std::string("subdomains_") + std::to_string(v_cl.getProcessUnitID()) + std::string(".vtk"));
nn_prcs<dim,T>::write(output);
ie_ghost<dim,T>::write(output,v_cl.getProcessUnitID());
ie_loc_ghost<dim,T>::write(output,v_cl.getProcessUnitID());
/*! \brief function to check the consistency of the information of the decomposition
*
* \return false if is inconsistent
*
*/
bool check_consistency()
{
if (ie_loc_ghost<dim,T>::check_consistency(getNLocalHyperCube()) == false)
return false;
std::cout << "Subdomains\n";
for (size_t p = 0 ; p < sub_domains.size() ; p++)
{
std::cout << ::SpaceBox<dim,T>(sub_domains.get(p)).toString() << "\n";
}
std::cout << "External ghost box\n";
for (size_t p = 0 ; p < nn_prcs<dim,T>::getNNProcessors() ; p++)
{
for (size_t i = 0 ; i < ie_ghost<dim,T>::getProcessorNEGhost(p) ; i++)
std::cout << ie_ghost<dim,T>::getProcessorEGhostBox(p,i).toString() << " prc=" << nn_prcs<dim,T>::IDtoProc(p) << " id=" << ie_ghost<dim,T>::getProcessorEGhostId(p,i) << "\n";
std::cout << "Internal ghost box\n";
for (size_t p = 0 ; p < nn_prcs<dim,T>::getNNProcessors() ; p++)
{
for (size_t i = 0 ; i < ie_ghost<dim,T>::getProcessorNIGhost(p) ; i++)
std::cout << ie_ghost<dim,T>::getProcessorIGhostBox(p,i).toString() << " prc=" << nn_prcs<dim,T>::IDtoProc(p) << " id=" << ie_ghost<dim,T>::getProcessorIGhostId(p,i) << "\n";
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/*! \brief Check if the CartDecomposition contain the same information
*
* \param ele Element to check
*
*/
bool is_equal(CartDecomposition<dim,T,Memory,Domain> & cart)
{
static_cast<ie_loc_ghost<dim,T>*>(this)->is_equal(static_cast<ie_loc_ghost<dim,T>&>(cart));
static_cast<nn_prcs<dim,T>*>(this)->is_equal(static_cast<nn_prcs<dim,T>&>(cart));
static_cast<ie_ghost<dim,T>*>(this)->is_equal(static_cast<ie_ghost<dim,T>&>(cart));
if (sub_domains != cart.sub_domains)
return false;
if (box_nn_processor != cart.box_nn_processor)
return false;
if (fine_s != cart.fine_s)
return false;
if (gr != cart.gr)
return false;
if (cd != cart.cd)
return false;
if (domain != cart.domain)
return false;
if (meta_compare<T[dim]>::meta_compare_f(cart.spacing,spacing) == false)
return false;
if (ghost != cart.ghost)
return false;
return true;
}
/*! \brief Check if the CartDecomposition contain the same information with the exception of the ghost part
* It is anyway required that the ghost come from the same sub-domains decomposition
*
* \param ele Element to check
*
*/
bool is_equal_ng(CartDecomposition<dim,T,Memory,Domain> & cart)
{
static_cast<ie_loc_ghost<dim,T>*>(this)->is_equal_ng(static_cast<ie_loc_ghost<dim,T>&>(cart));
static_cast<nn_prcs<dim,T>*>(this)->is_equal(static_cast<nn_prcs<dim,T>&>(cart));
static_cast<ie_ghost<dim,T>*>(this)->is_equal(static_cast<ie_ghost<dim,T>&>(cart));