Newer
Older
%% Solve Fokker Planck equation for given parameter set

Lars Hubatsch
committed
% Define parameters for tanh, according to Weber, Zwicker, Julicher, Lee.
b = @(chi, nu) nu^(1/3)*sqrt(chi/(chi-2));
e = @(chi) sqrt(3/8*(chi-2));
% prec = [0.5, 0.5, 1, 2, 3.5, 5];
fac = [1, 5, 10];%, 10, 100];
for i = 1:length(fac)
b = 2e-4;
u0 = 0.5;
P=1;
D_i = 2;
D_o = 20;
a = -1;
[b, u0, e, e_g, u_g] = calc_tanh_params(fac(i)*P, D_i, fac(i)*D_o, a, b, u0);
T_prec(i) = Ternary_model(2, 'FRAP', {-1, b, u0, ...
e, e_g, u_g, 300, 7, 0, 'Constituent'},...
t, 2000);
% T_prec(i) = Ternary_model(2, 'FRAP', {-1, b(7.7/3, 10^-5), u0, ...
% e(7.7/3), e_g, u_g, 300, 7, 0, 'Constituent'},...
% t, 0.2);
%% Test partitioning == 1 compared to natural no mobility case.
% Tg1: g0 = 1 everywhere.
Tpt1 = Ternary_model(0, 'FRAP', {-1, b(7/3, 10^-18), 0.5, e(7/3),...
0, 1, 300, 7, 0, 'Constituent'},...
t, 1);
Tpt1.solve_tern_frap();
%%
% Rescale mobility, such that phi_tot=1 everywhere achieves same flux
Gi = (1-Tpt1.phi_t(1))/(1-Tpt1.phi_t(1));
Go = Tpt1.phi_t(1)/Tpt1.phi_t(end)*(1-Tpt1.phi_t(end));
%%
Tga1 = Ternary_model(0, 'FRAP', {-1, b(7/3, 10^-18), Tpt1.phi_t(1), 0,...
(Go-Gi), Gi, 300, 7, 0, 'Constituent'},...
t, 1);
Tga1.solve_tern_frap();
%%
Tpt1.plot_sim('plot', 1, 'g')
%%
Tga1.plot_sim('plot', 1, 'k')
%%
figure(3); hold on;
% fact = [0.9965, 0.94, 1.01, 1.98];fact(i)*
c = {'g', 'm', 'k', 'r'};
for i = 1:3%length(T_prec)
% T_prec(i).plot_sim('plot', 1, c{i})
% Is this the right normalization? %/T_prec(i).phi_t(1)
plot(T_prec(i).x, T_prec(i).sol'/T_prec(i).phi_t(1), c{i}); axis([0, 20, -inf, 1]);
end
axis([0, 2, 0, 1])
x0 = [-0.05, -0.03, -0.01, 0.01, 0.03, 0.05];
T_diff_x0(i) = Ternary_model(0, 'Gauss', [-6, b(7.7/3, 10^-6), 0.5, ...
e(7.7/3), 0, 1, 300, 6+x0(i)], t, 0.5);

Lars Hubatsch
committed
%%
for i = 1:length(T)
csvwrite(['x_X73_', num2str(x0(i)), '.csv'], T_diff_x0(i).x+T(i).a);
csvwrite(['sol_X73_', num2str(x0(i)), '.csv'], T_diff_x0(i).sol(:, :));
%% Frank's/Stefano via Laplace transform vs Fokker Planck
t = linspace(0, 10, 1000);
tic
T_mov = Ternary_model(0, 'Gauss', {-6, b(7/3, 10^-15), 0.5, e(7/3),...
19, 1, 300, 7, 0, 'Constituent'}, t, 0.2);

Lars Hubatsch
committed
p_out = @(D_p, D_m, ga, x0, x, t) 1./(2*sqrt(D_p*pi*t))*...
(exp(-(x+x0).^2./(4*D_p*t))*(ga*sqrt(D_p)-sqrt(D_m))./...
(ga*sqrt(D_p)+sqrt(D_m))+exp(-(x-x0).^2./(4*D_p*t)));
p_in = @(D_p, D_m, ga, x0, x, t) 1./(sqrt(pi*t)*(sqrt(D_m)+...
ga*sqrt(D_p)))*exp(-(x-x0*sqrt(D_m/D_p)).^2/(4*D_m*t));
x_left = linspace(-4, 0, 1000);
x_right = linspace(0, 4, 1000);
%% Plot with full ternary model
T_temp = T_mov;
D_m = 1*(1-T_temp.u0-T_temp.e); % to make equal to ternary FRAP
D_p = 20*(1-T_temp.u0+T_temp.e);
ga = (T_temp.u0-T_temp.e)/(T_temp.u0+T_temp.e);
for i = 1:100%length(T_mov.t)
cla;
figure(1); hold on;
xlim([-2, 2]);
ylim([0, 1]);
plot(T_temp.x+T_temp.a, T_temp.sol(i, :), 'r.');%, 'LineWidth', 2);
plot(x_left, p_in(D_p, D_m, ga, T_temp.x0+T_temp.a, x_left,...
t(i)+0.01/1000), 'k-.', 'LineWidth', 2);
plot(x_right, p_out(D_p, D_m, ga, T_mov.x0+T_temp.a, x_right,...
t(i)+0.01/1000), 'k-.', 'LineWidth', 2);
plot(x_left, p_in(10*D_p, D_m, ga/1, T_temp.x0+T_temp.a, x_left,...
t(i)+0.01/1000), 'b-.', 'LineWidth', 2);
make_graph_pretty(['x [' char(956) 'm]'], 'c [a.u.]', '',...
[T_temp.a, 10, 0, inf])
% print([num2str(i),'.png'],'-dpng')
shg; pause();
end
%% Moving boundary
T_mov = Ternary_model(0, 'phi_tot', {-10, b(7/3, 10^-6), 0.5, e(7/3),...
0, 1, 10, 7, 0.5, 'Client'}, t, 0);
norm_fac = 1/sum(diff(T_mov.x).*...
(T_mov.sol(1, 1:end-1)+T_mov.sol(1, 2:end))/2);
s = '~/Nextcloud/Langevin_vs_MeanField/Data_Figs_FokkPla/';
csvwrite([s, 'MovingBound.csv'], [T_mov.x', norm_fac*T_mov.sol(1, :)',...
norm_fac*T_mov.sol(end, :)'])
%% Flux and entropy change for moving boundary
chi_phi = -4.530864768482371;
s_dot = zeros(1, length(T_mov.t));
for i = 1:length(T_mov.t)
x_interp = (T_mov.x(1:end-1)+T_mov.x(2:end))/2;
u = norm_fac*T_mov.sol(i, :);
u_interp = (u(1:end-1)+u(2:end))/2;
gra_a = Ternary_model.gradient_analytical(x_interp, T_mov.a, T_mov.b,...
T_mov.e, T_mov.v*T_mov.t(i));
dudx = diff(u)./diff(T_mov.x);
f = -g0*(dudx+chi_phi.*u_interp.*gra_a);
s_dot(i) = sum(diff(T_mov.x).*f.^2./(g0.*u_interp));
% figure(1); hold on;
% plot(0:10, zeros(1, 11), 'LineWidth', 2);
% plot(x_interp, f, 'LineWidth', 2)
% set(gca,'fontsize', 18)
% make_graph_pretty(['x [' char(956) 'm]'], 'flux', '',...
% [0, T_mov.system_size, min(f(:)), max(f)])
end
csvwrite([s, 'Mov_Bou_Flux.csv'], [x_interp; f])
csvwrite([s, 'Mov_Bou_Entr.csv'], [T_mov.t; s_dot])
T_mov = Ternary_model(0, 'FRAP', {-5, b(7/3, 10^-6), 0.5, e(7/3),...
0, 1, 10, 7, 0, 'Constituent'}, t, 0.2);
norm_fac = 1/sum(diff(T_mov.x)...
.*(T_mov.sol(1, 1:end-1)+T_mov.sol(1, 2:end))/2);
s = '~/Nextcloud/Langevin_vs_MeanField/Data_Figs_FokkPla/';
csvwrite([s, 'FRAP.csv'], [T_mov.x', norm_fac*T_mov.sol(1, :)',...
norm_fac*T_mov.sol(end, :)'])
%% Flux and entropy change for FRAP
s_dot = zeros(1, length(T_mov.t));
x_interp = (T_mov.x(1:end-1)+T_mov.x(2:end))/2;
u = norm_fac*T_mov.sol(i, :);
u_interp = (u(1:end-1)+u(2:end))/2;
pt = Ternary_model.phi_tot(x_interp, T_mov.a, T_mov.b, T_mov.e,...
T_mov.u0, T_mov.v*T_mov.t(i));
gra_a = Ternary_model.gradient_analytical(x_interp, T_mov.a, T_mov.b,...
T_mov.e, T_mov.v*T_mov.t(i));
g0 = Ternary_model.gamma0(x_interp, T_mov.a+T_mov.v*T_mov.t(i), T_mov.b,...
T_mov.e_g0, T_mov.u_g0, T_mov.v*T_mov.t(i));
dudx = diff(u)./diff(T_mov.x);
f = -g0.*(1-pt)./pt.*(pt.*dudx-u_interp.*gra_a);
s_dot(i) = sum(diff(T_mov.x).*f.^2./(g0.*(1-pt).*u_interp));
% figure(1); hold on; cla;
% plot(x_interp, f)
% pause()
csvwrite([s, 'FRAP_Flux.csv'], [x_interp; f])
csvwrite([s, 'FRAP_entropy.csv'], [T_mov.t; s_dot]);
%% Check integral of solution, should be mass conserving and sum to 1.
% integrate to 50, to avoid right boundary
[~, ind] = min(abs(T_prec(4).x-50));
bins = (T_prec(4).sol(:, 1:ind-1)+T_prec(4).sol(:, 2:ind))/2;
bin_size = diff(T_prec(4).x(1:ind));

Lars Hubatsch
committed
sum(bins(4, :).*bin_size)
%%
figure; hold on;
T_prec(1).plot_sim('plot', 10, 'magenta')
T_prec(2).plot_sim('plot', 10, 'red');
T_prec(3).plot_sim('plot', 10, 'green');
T_prec(4).plot_sim('plot', 10, 'k');
T_prec(5).plot_sim('plot', 10, 'blue');

Lars Hubatsch
committed
%% Check whether partitioning factor is kept throughout simulation.
% This should work for steep boundaries.
for i = 1:4
pks_min = findpeaks(-T_prec(5).sol(i, :));
pks_max = findpeaks(T_prec(5).sol(i, :));

Lars Hubatsch
committed
pks_max(1)/pks_min(1)

Lars Hubatsch
committed
%% Solve integrals for jump length distribution @ steady state.
% Set parameters
params = {-5, b(7.7/3, 10^-6), 0.5, e(7.7/3), 0, 1, 10, 7, 0, 'Constituent'};
t = [0, 0.05, 0.1];
x0 = 5.0:0.002:7.01;

Lars Hubatsch
committed
%% Run simulations with 'delta' IC across outside
T = {};
parfor i = 1:length(x0)

Lars Hubatsch
committed
T{i} = Ternary_model(0, 'Gauss', params, t, 0.2);
T{i}.x0 = x0(i);
T{i}.solve_tern_frap();
end
% save prob_laplace_X_7_7_short_2

Lars Hubatsch
committed
%% Calculate probabilities for each jump length in ls.
ls = 0.0005:0.005:2;
p = nan(1, length(ls));

Lars Hubatsch
committed
tic
parfor i = 1:length(ls)

Lars Hubatsch
committed
p(i) = int_prob(ls(i), T, x0, 0);

Lars Hubatsch
committed
toc
%% Test integrals
int_prob(0.3, T, x0, 0.1)
int_prob_simple(0.01, T, x0)
%% Normalization factor

Lars Hubatsch
committed
N = normalization(T, x0, 0);
%% Do we need to look at the left side as well?
figure; hold on;
plot(ls, p/N);
%% Write to file
csvwrite('jump_length_7_7_lb01.csv', ls)
csvwrite('prob_7_7_lb01.csv', p/N);

Lars Hubatsch
committed
%% Distribution for x0 can be taken from phi_tot (steady state)
function p = int_prob(l, T, x0, lb, T_mov, ind_t, ind_delta)
delta_x0 = diff(x0);
p = 0;
for i = 1:length(delta_x0)
x = (x0(i)+x0(i+1))/2;
if x-5>lb
if x-l > 5-lb; break; end

Lars Hubatsch
committed
if nargin==4
p_i = @(j) interp1(T{j}.x, T{j}.sol(3, :), x-l);
p2 = (p_i(i)+p_i(i+1))/2;
p = p + delta_x0(i)*...
T{1}.phi_tot(x, T{1}.a, T{1}.b, T{1}.e, T{1}.u0, 0)*p2;
elseif nargin==7
p_i = @(j) interp1(T{j}.x, T{j}.sol(ind_t+ind_delta, :), x-l);
p2 = (p_i(i)+p_i(i+1))/2;
p_sol = @(j) interp1(T_mov.x, T_mov.sol(ind_t, :), x);
p_sol2 = (p_sol(i)+p_sol(i+1))/2;
p = p + delta_x0(i)*p_sol2*p2;
end

Lars Hubatsch
committed
end
function p = int_prob_simple(l, T, x0)
p = 0;
p_i = @(j, x0) interp1(T{j}.x, T{j}.sol(3, :), x0-l);
for i = 1:length(x0)
if x0(i)-l > 5; break; end % Is this right?
% Calculate left bin boundary
if i == 1
left_bound = -T{1}.a;
else
left_bound = (x0(i)-x0(i-1))/2;
end
% Calculate right bin boundary
if i == length(x0)
right_bound = T{1}.system_size;
else
right_bound = (x0(i+1)+x0(i))/2;
end
bin_width = right_bound-left_bound;
p = p + bin_width*...

Lars Hubatsch
committed
T{1}.phi_tot(x0(i), T{1}.a, T{1}.b, T{1}.e, T{1}.u0, 0)*...
p_i(i, x0(i));
end
end
function p = normalization(T, x0, lb)
delta_x0 = diff(x0);
delta_x = diff(T{1}.x(logi));
p_i = zeros(1, length(delta_x0));
for i = 1:length(delta_x0)
sol = T{i}.sol(3, logi);
sol = (sol(1:end-1)+sol(2:end))/2;
x = (x0(i)+x0(i+1))/2;

Lars Hubatsch
committed
p_x0i = T{1}.phi_tot(x, T{1}.a, T{1}.b, T{1}.e, T{1}.u0, 0);
p_i(i) = delta_x0(i)*sum(sol.*delta_x)*p_x0i;
end
end