Newer
Older
/*
* CartDecomposition.hpp
*
* Created on: Aug 15, 2014
* Author: Pietro Incardona
*/
#ifndef CARTDECOMPOSITION_HPP
#define CARTDECOMPOSITION_HPP
#include "config.h"
#include "VCluster.hpp"
#include "Graph/CartesianGraphFactory.hpp"
#include <vector>
#include <initializer_list>
#include "SubdomainGraphNodes.hpp"
#include "metis_util.hpp"
#include "dec_optimizer.hpp"
#include "Space/Shape/Box.hpp"
#include <unordered_map>
#include "NN/CellList/CellList.hpp"
#include "common.hpp"
#include "ie_loc_ghost.hpp"
#include "ie_ghost.hpp"
#include "nn_processor.hpp"
#include "util/mathutil.hpp"
#define CARTDEC_ERROR 2000lu
/**
* \brief This class decompose a space into subspaces
*
* \tparam dim is the dimensionality of the physical domain we are going to decompose.
* \tparam T type of the space we decompose, Real, Integer, Complex ...
* \tparam Memory Memory factory used to allocate memory
* \tparam Domain Structure that contain the information of your physical domain
*
* Given an N-dimensional space, this class decompose the space into a Cartesian grid of small
* sub-sub-domain. At each sub-sub-domain is assigned an id that identify which processor is
* going to take care of that part of space (in general the space assigned to a processor is
* simply connected), a second step merge several sub-sub-domain with same id into bigger region
* sub-domain with the id. Each sub-domain has an extended space called ghost part
*
* Assuming that VCluster.getProcessUnitID(), equivalent to the MPI processor rank, return the processor local
* processor id, we define
*
* * local processor: processor rank
* * local sub-domain: sub-domain given to the local processor
* * external ghost box: (or ghost box) are the boxes that compose the ghost space of the processor, or the
* boxes produced expanding every local sub-domain by the ghost extension and intersecting with the sub-domain
* of the other processors
* * Near processors are the processors adjacent to the local processor, where with adjacent we mean all the processor
* that has a non-zero intersection with the ghost part of the local processor, or all the processors that
* produce non-zero external boxes with the local processor, or all the processor that should communicate
* in case of ghost data synchronization
* * internal ghost box: is the part of ghost of the near processor that intersect the space of the
* processor, or the boxes produced expanding the sub-domain of the near processors with the local sub-domain
* * Near processor sub-domain: is a sub-domain that live in the a near (or contiguous) processor
* * Near processor list: the list of all the near processor of the local processor (each processor has a list
* of the near processor)
* * Local ghosts interal or external are all the ghosts that does not involve inter-processor communications
*
* \see calculateGhostBoxes() for a visualization of internal and external ghost boxes
* ### Create a Cartesian decomposition object on a Box space, distribute, calculate internal and external ghost boxes
* \snippet CartDecomposition_unit_test.hpp Create CartDecomposition
*
template<unsigned int dim, typename T, typename Memory=HeapMemory, template<unsigned int, typename> class Domain=Box>
class CartDecomposition : public ie_loc_ghost<dim,T>, public nn_prcs<dim,T> , public ie_ghost<dim,T>
//! Type of the domain we are going to decompose
typedef T domain_type;
//! It simplify to access the SpaceBox element
typedef SpaceBox<dim,T> Box;
private:
//! This is the key type to access data_s, for example in the case of vector
typedef typename openfpm::vector<SpaceBox<dim,T>,Memory,openfpm::vector_grow_policy_default,openfpm::vect_isel<SpaceBox<dim,T>>::value >::access_key acc_key;
openfpm::vector<SpaceBox<dim,T>> sub_domains;
//! for each sub-domain, contain the list of the neighborhood processors
openfpm::vector<openfpm::vector<long unsigned int> > box_nn_processor;
//! Structure that contain for each sub-sub-domain box the processor id
//! Structure that store the cartesian grid information
grid_sm<dim,void> gr;
//! Structure that decompose your structure into cell without creating them
//! useful to convert positions to CellId or sub-domain id in this case
CellDecomposer_sm<dim,T> cd;
//! rectangular domain to decompose
Domain<dim,T> domain;
//! Box Spacing
T spacing[dim];
//! Runtime virtual cluster machine
Vcluster & v_cl;
// Smallest subdivision on each direction
::Box<dim,T> ss_box;
::Box<dim,T> bbox;
// Heap memory receiver
HeapMemory hp_recv;
// vector v_proc
openfpm::vector<size_t> v_proc;
// reference counter of the object in case is shared between object
long int ref_cnt;
Ghost<dim,T> ghost;
// Boundary condition info
size_t bc[dim];
/*! \brief Constructor, it decompose and distribute the sub-domains across the processors
* \param v_cl Virtual cluster, used internally for communications
void CreateDecomposition(Vcluster & v_cl, const size_t (& bc)[dim])
#ifdef SE_CLASS1
if (&v_cl == NULL)
{
std::cerr << __FILE__ << ":" << __LINE__ << " error VCluster instance is null, check that you ever initialized it \n";
ACTION_ON_ERROR()
}
#endif
// Calculate the total number of box and and the spacing
// on each direction
// Get the box containing the domain
SpaceBox<dim,T> bs = domain.getBox();
for (unsigned int i = 0; i < dim ; i++)
{
// Calculate the spacing
spacing[i] = (bs.getHigh(i) - bs.getLow(i)) / gr.size(i);
}
// Here we use METIS
// Create a cartesian grid graph
CartesianGraphFactory<dim,Graph_CSR<nm_part_v,nm_part_e>> g_factory_part;
// the graph has only non perdiodic boundary conditions
size_t bc_o[dim];
for (size_t i = 0 ; i < dim ; i++)
bc_o[i] = NON_PERIODIC;
Graph_CSR<nm_part_v,nm_part_e> gp = g_factory_part.template construct<NO_EDGE,T,dim-1>(gr.getSize(),domain,bc_o);
// Get the number of processing units
size_t Np = v_cl.getProcessingUnits();
// Get the processor id
long int p_id = v_cl.getProcessUnitID();
// Convert the graph to metis
Metis<Graph_CSR<nm_part_v,nm_part_e>> met(gp,Np);
// fill the structure that store the processor id for each sub-domain
// Optimize the decomposition creating bigger spaces
// And reducing Ghost over-stress
dec_optimizer<dim,Graph_CSR<nm_part_v,nm_part_e>> d_o(gp,gr.getSize());
// set of Boxes produced by the decomposition optimizer
openfpm::vector<::Box<dim,size_t>> loc_box;
d_o.template optimize<nm_part_v::sub_id,nm_part_v::id>(gp,p_id,loc_box,box_nn_processor,bc);
// Initialize ss_box and bbox
if (loc_box.size() >= 0)
{
SpaceBox<dim,size_t> sub_dc = loc_box.get(0);
SpaceBox<dim,T> sub_d(sub_dc);
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
ss_box = sub_d;
for (size_t s = 1 ; s < loc_box.size() ; s++)
SpaceBox<dim,size_t> sub_dc = loc_box.get(s);
SpaceBox<dim,T> sub_d(sub_dc);
// re-scale and add spacing (the end is the starting point of the next domain + spacing)
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
// Calculate the bound box
bbox.enclose(sub_d);
// Create the smallest box contained in all sub-domain
ss_box.contained(sub_d);
nn_prcs<dim,T>::create(box_nn_processor, sub_domains);
nn_prcs<dim,T>::refine_ss_box(ss_box);
// fine_s structure contain the processor id for each sub-sub-domain
// with sub-sub-domain we mean the sub-domain decomposition before
// running dec_optimizer (before merging sub-domains)
auto it = gp.getVertexIterator();
while (it.isNext())
{
size_t key = it.get();
// fill with the fine decomposition
fine_s.get(key) = gp.template vertex_p<nm_part_v::id>(key);
++it;
}
Initialize_geo_cell_lists();
}
/*! \brief Initialize geo_cell lists
*
*
*
*/
void Initialize_geo_cell_lists()
{
// Get the smallest sub-division on each direction
::Box<dim,T> unit = getSmallestSubdivision();
// Get the processor bounding Box
::Box<dim,T> bound = getProcessorBounds();
size_t div[dim];
for (size_t i = 0 ; i < dim ; i++)
div[i] = (size_t)((bound.getHigh(i) - bound.getLow(i)) / unit.getHigh(i));
// Create shift
Point<dim,T> orig;
// p1 point of the Processor bound box is the shift
for (size_t i = 0 ; i < dim ; i++)
orig.get(i) = bound.getLow(i);
// Initialize the geo_cell structure
ie_ghost<dim,T>::Initialize_geo_cell(domain,div,orig);
// Initialize shift vectors
ie_ghost<dim,T>::generateShiftVectors(domain);
}
/*! \brief Create the subspaces that decompose your domain
*
*/
void CreateSubspaces()
{
// Create a grid where each point is a space
grid_sm<dim,void> g(div);
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// create a grid_key_dx iterator
grid_key_dx_iterator<dim> gk_it(g);
// Divide the space into subspaces
while (gk_it.isNext())
{
//! iterate through all subspaces
grid_key_dx<dim> key = gk_it.get();
//! Create a new subspace
SpaceBox<dim,T> tmp;
//! fill with the Margin of the box
for (int i = 0 ; i < dim ; i++)
{
tmp.setHigh(i,(key.get(i)+1)*spacing[i]);
tmp.setLow(i,key.get(i)*spacing[i]);
}
//! add the space box
sub_domains.add(tmp);
// add the iterator
++gk_it;
}
}
public:
//! Increment the reference counter
void incRef()
{ref_cnt++;}
//! Decrement the reference counter
void decRef()
{ref_cnt--;}
//! Return the reference counter
long int ref()
{
return ref_cnt;
}
/*! \brief Cartesian decomposition constructor
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
CartDecomposition(Vcluster & v_cl)
:nn_prcs<dim,T>(v_cl),v_cl(v_cl),ref_cnt(0)
{
// Reset the box to zero
bbox.zero();
}
/*! \brief Cartesian decomposition copy constructor
*
* \param cart object to copy
*
*/
CartDecomposition(const CartDecomposition<dim,T,Memory,Domain> & cart)
:nn_prcs<dim,T>(cart.v_cl),v_cl(cart.v_cl),ref_cnt(0)
{
this->operator=(cart);
}
/*! \brief Cartesian decomposition copy constructor
*
* \param cart object to copy
*
*/
CartDecomposition(CartDecomposition<dim,T,Memory,Domain> && cart)
:nn_prcs<dim,T>(cart.v_cl),v_cl(cart.v_cl),ref_cnt(0)
{
this->operator=(cart);
}
//! Cartesian decomposition destructor
~CartDecomposition()
{}
/*! \brief class to select the returned id by ghost_processorID
*
*/
class box_id
{
public:
/*! \brief Return the box id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return box id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return b_id;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class processor_id
{
public:
/*! \brief Return the processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return processor id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return p.proc;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class lc_processor_id
{
public:
/*! \brief Return the near processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return local processor id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return p.lc_proc;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class shift_id
{
public:
/*! \brief Return the shift id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return shift_id id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return p.shift_id;
}
};
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/*! \brief Apply boundary condition to the point
*
* \param p Point to apply the boundary condition
*
*/
void applyPointBC(float (& pt)[dim]) const
{
for (size_t i = 0 ; i < dim ; i++)
{
if (bc[i] == PERIODIC)
pt[i] = openfpm::math::periodic_l(pt[i],domain.getHigh(i),domain.getLow(i));
}
}
/*! \brief Apply boundary condition to the point
*
* \param p Point to apply the boundary condition
*
*/
void applyPointBC(Point<dim,T> & pt) const
{
for (size_t i = 0 ; i < dim ; i++)
{
if (bc[i] == PERIODIC)
pt.get(i) = openfpm::math::periodic_l(pt.get(i),domain.getHigh(i),domain.getLow(i));
}
}
/*! \brief Apply boundary condition to the point
*
* \param encapsulated object
*
*/
template<typename Mem> void applyPointBC(encapc<1,Point<dim,T>,Mem> && pt) const
{
for (size_t i = 0 ; i < dim ; i++)
{
if (bc[i] == PERIODIC)
pt.template get<0>()[i] = openfpm::math::periodic_l(pt.template get<0>()[i],domain.getHigh(i),domain.getLow(i));
}
}
*
* Example: Processor 10 calculate
* B8_0 B9_0 B9_1 and B5_0
*
*
+----------------------------------------------------+
| |
| Processor 8 |
| Sub-domain 0 +-----------------------------------+
| | |
| | |
++--------------+---+---------------------------+----+ Processor 9 |
| | | B8_0 | | Subdomain 0 |
| +------------------------------------+ |
| | | | | |
| | | XXXXXXXXXXXXX XX |B9_0| |
| | B | X Processor 10 X | | |
| Processor 5 | 5 | X Sub-domain 0 X | | |
| Subdomain 0 | _ | X X +----------------------------------------+
| | 0 | XXXXXXXXXXXXXXXX | | |
| | | | | |
| | | | | Processor 9 |
| | | |B9_1| Subdomain 1 |
| | | | | |
| | | | | |
| | | | | |
+--------------+---+---------------------------+----+ |
| |
+-----------------------------------+
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
+----------------------------------------------------+
| |
| Processor 8 |
| Sub-domain 0 +-----------------------------------+
| +---------------------------------------------+ |
| | G8_0 | | |
++--------------+------------------------------------+ | Processor 9 |
| | | | | Subdomain 0 |
| | | |G9_0| |
| | | | | |
| | | XXXXXXXXXXXXX XX | | |
| | | X Processor 10 X | | |
| Processor|5 | X Sub-domain 0 X | | |
| Subdomain|0 | X X +-----------------------------------+
| | | XXXXXXXXXXXXXXXX | | |
| | G | | | |
| | 5 | | | Processor 9 |
| | | | | | Subdomain 1 |
| | 0 | |G9_1| |
| | | | | |
| | | | | |
+--------------+------------------------------------+ | |
| | | |
+----------------------------------------+----+------------------------------+
*
*
*
* \param ghost margins for each dimensions (p1 negative part) (p2 positive part)
*
^ p2[1]
|
|
+----+----+
| |
| |
p1[0]<-----+ +----> p2[0]
| |
| |
+----+----+
|
v p1[1]
{
#ifdef DEBUG
// the ghost margins are assumed to be smaller
// than one sub-domain
for (size_t i = 0 ; i < dim ; i++)
{
if (fabs(ghost.template getLow(i)) >= ss_box.getHigh(i) || ghost.template getHigh(i) >= ss_box.getHigh(i))
std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " : Ghost are bigger than one sub-domain" << "\n";
}
}
#endif
// Intersect all the local sub-domains with the sub-domains of the contiguous processors
// create the internal structures that store ghost information
ie_ghost<dim,T>::create_box_nn_processor_ext(v_cl,ghost,sub_domains,box_nn_processor,*this);
ie_ghost<dim,T>::create_box_nn_processor_int(v_cl,ghost,sub_domains,box_nn_processor,*this);
// ebox must come after ibox (in this case)
ie_loc_ghost<dim,T>::create(sub_domains,domain,ghost,bc);
// get the smallest sub-domain dimension on each direction
for (size_t i = 0 ; i < dim ; i++)
{
if (fabs(ghost.template getLow(i)) >= ss_box.getHigh(i) || ghost.template getHigh(i) >= ss_box.getHigh(i))
std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " : Ghost are bigger than one sub-domain" << "\n";
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*! \brief It create another object that contain the same decomposition information but with different ghost boxes
*
* \param g ghost
*
* \return a duplicated decomposition with different ghost boxes
*
*/
CartDecomposition<dim,T,Memory,Domain> duplicate(Ghost<dim,T> & g)
{
CartDecomposition<dim,T,Memory,Domain> cart(v_cl);
cart.box_nn_processor = box_nn_processor;
cart.sub_domains = sub_domains;
cart.fine_s = fine_s;
cart.gr = gr;
cart.cd = cd;
cart.domain = domain;
std::copy(spacing,spacing+3,cart.spacing);
//! Runtime virtual cluster
cart.v_cl = v_cl;
cart.bbox = bbox;
cart.ss_box = ss_box;
cart.ghost = g;
(static_cast<nn_prcs<dim,T> &>(cart)).create(box_nn_processor, sub_domains);
(static_cast<nn_prcs<dim,T> &>(cart)).applyBC(domain,ghost,bc);
cart.Initialize_geo_cell_lists();
cart.calculateGhostBoxes();
return cart;
}
/*! \brief It create another object that contain the same information and act in the same way
*
* \return a duplicated decomposition
*
*/
CartDecomposition<dim,T,Memory,Domain> duplicate()
{
CartDecomposition<dim,T,Memory,Domain> cart(v_cl);
(static_cast<ie_loc_ghost<dim,T>*>(&cart))->operator=(static_cast<ie_loc_ghost<dim,T>>(*this));
(static_cast<nn_prcs<dim,T>*>(&cart))->operator=(static_cast<nn_prcs<dim,T>>(*this));
(static_cast<ie_ghost<dim,T>*>(&cart))->operator=(static_cast<ie_ghost<dim,T>>(*this));
cart.sub_domains = sub_domains;
cart.box_nn_processor = box_nn_processor;
cart.fine_s = fine_s;
cart.gr = gr;
cart.cd = cd;
cart.domain = domain;
std::copy(spacing,spacing+3,cart.spacing);
//! Runtime virtual cluster
cart.v_cl = v_cl;
cart.ghost = ghost;
cart.bbox = bbox;
cart.ss_box = ss_box;
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
return cart;
}
/*! \brief Copy the element
*
* \param cart element to copy
*
*/
CartDecomposition<dim,T,Memory,Domain> & operator=(const CartDecomposition & cart)
{
static_cast<ie_loc_ghost<dim,T>*>(this)->operator=(static_cast<ie_loc_ghost<dim,T>>(cart));
static_cast<nn_prcs<dim,T>*>(this)->operator=(static_cast<nn_prcs<dim,T>>(cart));
static_cast<ie_ghost<dim,T>*>(this)->operator=(static_cast<ie_ghost<dim,T>>(cart));
sub_domains = cart.sub_domains;
box_nn_processor = cart.box_nn_processor;
fine_s = cart.fine_s;
gr = cart.gr;
cd = cart.cd;
domain = cart.domain;
std::copy(cart.spacing,cart.spacing+3,spacing);
//! Runtime virtual cluster
v_cl = cart.v_cl;
ghost = cart.ghost;
bbox = cart.bbox;
ss_box = cart.ss_box;
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
return *this;
}
/*! \brief Copy the element, move semantic
*
* \param cart element to copy
*
*/
CartDecomposition<dim,T,Memory,Domain> & operator=(CartDecomposition && cart)
{
static_cast<ie_loc_ghost<dim,T>*>(this)->operator=(static_cast<ie_loc_ghost<dim,T>*>(cart));
static_cast<nn_prcs<dim,T>*>(this)->operator=(static_cast<nn_prcs<dim,T>*>(cart));
static_cast<ie_ghost<dim,T>*>(this)->operator=(static_cast<ie_ghost<dim,T>*>(cart));
sub_domains.swap(cart.sub_domains);
box_nn_processor.swap(cart.box_nn_processor);
fine_s.swap(cart.fine_s);
gr = cart.gr;
cd = cart.cd;
domain = cart.domain;
std::copy(cart.spacing,cart.spacing+3,spacing);
//! Runtime virtual cluster
v_cl = cart.v_cl;
ghost = cart.ghost;
cart.bbox = bbox;
cart.ss_box = ss_box;
return *this;
}
/*! \brief The default grid size
*
* The default grid is always an isotropic grid that adapt with the number of processors,
* it define in how many cell it will be divided the space for a particular required minimum
* number of sub-domain
*
*/
static size_t getDefaultGrid(size_t n_sub)
{
// Calculate the number of sub-sub-domain on
// each dimension
return openfpm::math::round_big_2(pow(n_sub,1.0/dim));
}
/*! \brief Given a point return in which processor the particle should go
template<typename Mem> size_t inline processorID(encapc<1, Point<dim,T>, Mem> p)
/*! \brief Given a point return in which processor the particle should go
* \return processorID
size_t inline processorID(const Point<dim,T> &p) const
return fine_s.get(cd.getCell(p));
/*! \brief Given a point return in which processor the particle should go
size_t inline processorID(const T (&p)[dim]) const
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
/*! \brief Given a point return in which processor the particle should go
*
* Boundary conditions are considered
*
* \return processorID
*
*/
template<typename Mem> size_t inline processorIDBC(encapc<1, Point<dim,T>, Mem> p)
{
Point<dim,T> pt = p;
applyPointBC(pt);
return fine_s.get(cd.getCell(pt));
}
/*! \brief Given a point return in which processor the particle should go
*
* Boundary conditions are considered
*
* \return processorID
*
*/
size_t inline processorIDBC(const Point<dim,T> &p) const
{
Point<dim,T> pt = p;
applyPointBC(pt);
return fine_s.get(cd.getCell(p));
}
/*! \brief Given a point return in which processor the particle should go
*
* Boundary consition are considered
*
* \return processorID
*
*/
size_t inline processorIDBC(const T (&p)[dim]) const
{
Point<dim,T> pt = p;
applyPointBC(pt);
return fine_s.get(cd.getCell(p));
}
/*! \brief Get the smallest subdivision of the domain on each direction
*
* \return a box p1 is set to zero
*
*/
const ::Box<dim,T> & getSmallestSubdivision()
{
return ss_box;
}
/*! \brief Set the parameter of the decomposition
*
* \param div_ storing into how many domain to decompose on each dimension
* \param domain_ domain to decompose
*
*/
void setParameters(const size_t (& div_)[dim], Domain<dim,T> domain_, const size_t (& bc)[dim] ,const Ghost<dim,T> & ghost)
// set the boundary conditions
for (size_t i = 0 ; i < dim ; i++)
this->bc[i] = bc[i];
/*! \brief Get the number of local sub-domains
*
* \return the number of sub-domains
*
*/
size_t getNLocalHyperCube()
{
return sub_domains.size();
}
* \param i (each local processor can have more than one sub-domain)
* \return the sub-domain
*
*/
SpaceBox<dim,T> getLocalHyperCube(size_t lc)
{
// Create a space box
SpaceBox<dim,T> sp;
// fill the space box
for (size_t k = 0 ; k < dim ; k++)
{
// create the SpaceBox Low and High
sp.setLow(k,sub_domains.template get<Box::p1>(lc)[k]);
sp.setHigh(k,sub_domains.template get<Box::p2>(lc)[k]);
}
return sp;
}
/*! \brief Get the local sub-domain with ghost extension
*
* \param i (each local processor can have more than one sub-domain)
* \return the sub-domain
*
*/
SpaceBox<dim,T> getSubDomainWithGhost(size_t lc)
{
// Create a space box
SpaceBox<dim,T> sp = sub_domains.get(lc);
// enlarge with ghost
sp.enlarge(ghost);
return sp;
}
/*! \brief Return the structure that store the physical domain
*
* \return The physical domain
*
*/
const Domain<dim,T> & getDomain()
*
* \warning if the particle id outside the domain the result is unreliable
template<typename Mem> bool isLocal(const encapc<1, Point<dim,T>, Mem> p) const
return processorID<Mem>(p) == v_cl.getProcessUnitID();
*
* \warning if the particle id outside the domain the result is unreliable
bool isLocal(const T (&pos)[dim]) const
return processorID(pos) == v_cl.getProcessUnitID();
}
/*! \brief Check if the particle is local considering boundary conditions
*