Newer
Older
#!/usr/bin/env Rscript
#+ include=FALSE
## TODO Melanie: make sure reports can be spinned
## Example: spin.R -c $NGS_TOOLS/dge_workflow/featcounts_deseq.R.R "\"count_matrix.txt""
suppressMessages(require(docopt))
doc <- '
Convert a featureCounts results matrix into a dge-report using deseq2
Usage: region_dba.R [options] <count_matrix>
Options:
--contrasts=<tab_delim_table> Table with sample pairs for which dge analysis should be performed
--qcutoff <qcutoff> Use a q-value cutoff of 0.01 instead of a q-value cutoff [default: 0.01]
--pcutoff <pcutoff> Override q-value filter and filter by p-value instead
--min_count <min_count> Minimal expression in any of the sample to be included in the final result list [default: 1]
'
opts <- docopt(doc, "--pcutoff 0.05 --contrasts ../time_contrasts.txt ../peak_clusters_tss5kb.count_matrix.txt")
require(knitr)
require(DESeq2)
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/core_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/ggplot_commons.R")
devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.12/R/bio/diffex_commons.R")
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#require.auto(gplots)
#+ results='asis', echo=FALSE
cat('
<link rel="stylesheet" type="text/css" href="http://cdn.datatables.net/1.10.5/css/jquery.dataTables.min.css">
<script type="text/javascript" charset="utf8" src="http://code.jquery.com/jquery-2.1.2.min.js"></script>
<script type="text/javascript" charset="utf8" src="http://cdn.datatables.net/1.10.5/js/jquery.dataTables.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
// alert("test")
//$("table").DataTable();
//$("table").DataTable();
//$("#tab_id").DataTable();
$(".dtable").DataTable();
} );
</script>
')
count_matrix_file <- opts$count_matrix
contrasts_file <- opts$contrasts
pcutoff <- if(is.null(opts$pcutoff)) NULL else as.numeric(opts$pcutoff)
qcutoff <- if(is.numeric(pcutoff)) NULL else as.numeric(opts$qcutoff)
if(is.numeric(pcutoff)) opts$qcutoff <- NULL
########################################################################################################################
#' # Load annotation data
## load transcriptome annotations needed for results annotation
geneInfo <- quote({
mart <- biomaRt::useDataset("drerio_gene_ensembl", mart = biomaRt::useMart("ensembl"))
c("ensembl_gene_id", "external_gene_name", "description", "chromosome_name", "start_position", "end_position") %>%
biomaRt::getBM(mart=mart)
}) %>% cache_it("geneInfo")
########################################################################################################################
#' # Differential Expresssion Analysis
## TODO Melanie
## * similar to example-report (see email) created with "dge_workflow/cuffdiff_report.R"
## * sections to migrate are "Replicate Correlation and Clustering" and "Quality Control"
########################################################################################################################
#' Working Directory: `r getwd()`
resultsBase <- count_matrix_file %>% basename() %>% trim_ext(".txt") %>% trim_ext(".count_matrix")
countData <- read.delim(count_matrix_file)
names(countData) <- names(countData) %>% str_replace("[.]1", "")
countMatrix <- countData %>% column2rownames("ensembl_gene_id") %>% as.matrix()
#' Apply expression filter
nrow(countMatrix)
countMatrix %<>% filterByExpression()
nrow(countMatrix)
#filterByExpression <- function(fpkmMat, min_count=1, logMode=F){
# if(logMode) fpkmMat<-log10(fpkmMat+1) ## add a pseudocount
#
# geneMax <- apply(fpkmMat, 1, max)
#
# fpkmMat[geneMax>min_count,]
#}
#countMatrixFilt <- filterByExpression(countMatrix, min_count=50)
#' See deseq reference [docs](http://master.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf) for details
#' To understand fold-change shrinking and estimation check out
#' [Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2](http://genomebiology.com/2014/15/12/550/abstract)
get_sample_from_replicate <- function(repName) str_match(repName, "(.*)_[0-9]{1}$")[,2]
#' Define or load a contrasts matrix
if(!is.null(contrasts_file)){
contrasts <- read.delim(contrasts_file, header=T) %>% fac2char()
}else{
contrasts <- data.frame(sample=get_sample_from_replicate(colnames(countMatrix))) %>% distinct() %>%
merge(.,., suffixes=c("_1", "_2"), by=NULL) %>%
filter(ac(sample_1)>ac(sample_2)) %>%
# filter(ac(sample_1)!=ac(sample_2)) %>%
fac2char()
write.delim(contrasts, "dba_contrasts.txt")
}
contrasts %>% kable()
########################################################################################################################
#' ## Perform Differential Expression Analysis
#normalizationFactors(dds)
## sizeFactor R help:sigEnrResults
#dds <- makeExampleDESeqDataSet()
#dds <- estimateSizeFactors( dds )
#sizeFactors(dds)
## try again but now use lambda normalization
## see "3.11 Sample-/gene-dependent normalization factors" in the DEseq2 manual for details
colData <- data.frame(condition=colnames(countMatrix) %>% get_sample_from_replicate)
dds <- DESeqDataSetFromMatrix(countMatrix, colData, formula(~ condition))
#' # Custom Lambda Normalization
#' See https://www.biostars.org/p/79978/
sizeFactors(dds) %>% set_names(colnames(countMatrix)) %>% melt() %>% rownames2column("sample") %>% ggplot(aes(sample, value)) + geom_bar(stat="identity") + ggtitle("deseq size factors")
##' From the DESeq docs about how size factors are used: The sizeFactors vector assigns to each column of the count matrix a value, the size factor, such that count values in the columns can be brought to a common scale by dividing by the corresponding size factor.
##' This means that counts are divied by size factors. So let's now load the lambda libraies and replace the predefined size factors with our custom ones
#' From DESeq manual: The regularized log transformation is preferable to the variance stabilizing transformation if the size factors vary widely.
#' Run Deseq Test
#dds <- DESeq(dds, fitType='local', betaPrior=FALSE)
#dds <- DESeq(dds, fitType='local')
dds <- DESeq(dds)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#res <- results(dds)
#resultsNames(dds)
#' Model Overview
#+ results='asis'
summary(results(dds))
## extract all de-sets according to our contrasts model
deResults <- adply(contrasts, 1, splat(function(sample_1, sample_2){
# browser()
results(dds, contrast=c("condition",sample_1,sample_2)) %>%
rownames2column("ensembl_gene_id") %>%
as.data.frame() %>%
## see http://rpackages.ianhowson.com/bioc/DESeq2/man/results.html when using contrasts argument
rename(s1_over_s2_logfc=log2FoldChange) %>%
mutate(sample_1=sample_1, sample_2=sample_2)
}))
deResults %>% ggplot(aes(s1_over_s2_logfc)) +
geom_histogram(binwidth=0.1) +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0, color="blue") +
xlim(-2,2) +
ggtitle("sample1 over sampl2 logFC ")
#' ## Significnce of differential binding
deResults %>% ggplot(aes(pvalue)) +
geom_histogram() +
xlim(0,1) +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0.01, slope=1, color="blue") +
ggtitle("p-value distributions") #+ scale_x_log10()
deResults %>% ggplot(aes(padj)) +
geom_histogram() +
facet_grid(sample_1 ~ sample_2) + geom_vline(yintercept=0.01, slope=1, color="blue") +
ggtitle("Adjusted p-value distributions") #+ scale_x_log10()
#' Set hit criterion
#+ results='asis'
if(!is.null(qcutoff)){
echo("Using q-value cutoff of", qcutoff)
deResults %<>% transform(is_hit=padj<=qcutoff)
}else{
echo("Using p-value cutoff of", pcutoff)
deResults %<>% transform(is_hit=pvalue<=pcutoff)
}
#deResults %<>% mutate(is_hit=pvalue<0.05)
deResults %<>% mutate(s1_overex=s1_over_s2_logfc>1)
normCounts <- counts(dds,normalized=TRUE) %>%
# set_names(colData(dds)$condition) %>% rownames2column("ensembl_gene_id")
set_names(colnames(countMatrix)) %>% rownames2column("ensembl_gene_id")
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
## .. should be same as input
#filter(countData, ensembl_gene_id=="ENSDARG00000000001")
#' # MA and Volcano plots
# deseq approach
# plotMA(deResults, main="DESeq2", ylim=c(-2,2))
## facet plot
maData <- normCounts %>%
gather(sample, norm_count, -ensembl_gene_id) %>%
merge(.,., by="ensembl_gene_id", suffixes=c("_1", "_2")) %>%
# filter(ac(sample_1)<ac(sample_2)) %>%
# add diffex status
merge(deResults)
#+ fig.width=16, fig.height=14
maData %>% ggplot(aes(0.5*log2(norm_count_1*norm_count_2), log2(norm_count_2/norm_count_1), color=pvalue<0.05)) +
geom_point(alpha=0.3) +
geom_hline(yintercept=0, color="red") +
facet_grid(sample_1 ~ sample_2)
##Volcano plots
hitCounts <- filter(deResults, is_hit) %>%
count(sample_1, sample_2, sample_1_overex=s1_over_s2_logfc>0) %>%
rename(hits=n) %>%
merge(data.frame(sample_1_overex=c(T,F), x_pos=c(-2.5,2.5)))
#+ fig.width=16, fig.height=14
deResults %>% ggplot(aes(s1_over_s2_logfc, -log10(pvalue), color=is_hit)) +
geom_jitter(alpha=0.3, position = position_jitter(height = 0.2)) +
# theme_bw() +
xlim(-3,3) +
scale_color_manual(values = c("TRUE"="red", "FALSE"="black")) +
# ggtitle("Insm1/Ctrl") +
## http://stackoverflow.com/questions/19764968/remove-point-transparency-in-ggplot2-legend
guides(colour = guide_legend(override.aes = list(alpha=1))) +
## tweak axis labels
xlab(expression(log[2]("x/y"))) +
ylab(expression(-log[10]("p value"))) +
## add hit couts
geom_text(aes(label=hits, x=x_pos), y=2, color="red", size=10, data=hitCounts) +
facet_grid(sample_1 ~ sample_2)
# Define absolute binding categories
#rawCounts <- counts(dds,normalized=F) %>%
# set_names(colData(dds)$condition) %>% rownames2column("ensembl_gene_id")
#ggplot(rawCounts, aes(H3HA_Sphere)) + geom_histogram() + scale_x_log10() + ggtitle("raw H3HA_Sphere counts distribution")
#require.auto(Hmisc)
#
#bindCats <- rawCounts %>% transmute(ensembl_gene_id, bind_category=cut2(H3HA_Sphere, cuts=c(10, 100)))
#with(bindCats, as.data.frame(table(bind_category))) %>% kable()
# Export the complete dataset for later analysis
deAnnot <- deResults %>%
inner_join(normCounts) %>%
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
write.delim(deAnnot, file=paste0(resultsBase, ".dba_results.txt"))
#' [deAnnot](`r paste0(resultsBase, ".dba_results.txt")`)
#' ## Hits Summary
## Extract hits from deseq results
degs <- deAnnot %>% filter(is_hit)
ggplot(degs, aes(paste(sample_1, "vs", sample_2))) + geom_bar() +xlab(NULL) + ylab("# DBGs") + ggtitle("DBG count summary") + coord_flip()
degs %>%
ggplot(aes(paste(sample_1, "vs", sample_2), fill=s1_overex)) +
geom_bar(position="dodge") +
xlab(NULL) + ylab("# DBGs") +
ggtitle("DBG count summary by direction of expression") +
coord_flip()
# Export DBA genes
## disabled because we just subset the annotated data now to define degs
#degsAnnot <- degs %>%
# inner_join(normCounts) %>%
# left_join(geneInfo) %>%
# left_join(bindCats)
degs %>% write.delim(file=paste0(resultsBase, ".diffbind_genes.txt"))
#' [degs](`r paste0(resultsBase, ".diffbind_genes.txt")`)
## render interactive hit browser
#+results='asis'
degs %>%
left_join(geneInfo) %>%
mutate(
igv=paste0("<a href='http://localhost:60151/goto?locus=", chromosome_name,":", start_position, "-", end_position, "'>IGV</a>")
) %>%
select(s1_over_s2_logfc, pvalue, ensembl_gene_id, sample_1, sample_2, external_gene_name, description, igv) %>%
kable("html", table.attr = "class='dtable'", escape=F)
## TODO Melanie compare with section "Differentially expressed genes" and complement missing bits
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
## TODO later, reenable child-inclusion of enrichment analysis
########################################################################################################################
##' ## Term enrichment Data Preparation
##+ echo=FALSE
#
##' This analysis was performed using [David](http://david.abcc.ncifcrf.gov/). The following ontologies were tested: `r paste(ontologies, collapse=', ')`
#
#geneLists <- degs %>%
# transmute(ensembl_gene_id, list_id=paste(sample_1, "vs", sample_2))
#
#if(nrow(contrasts)<4){
# geneLists <- rbind_list(
# geneLists,
# degs %>% filter(s1_overex) %>% transmute(ensembl_gene_id, list_id=paste(sample_1, ">", sample_2)),
# degs %>% filter(!s1_overex) %>% transmute(ensembl_gene_id, list_id=paste(sample_1, "<", sample_2))
# )
#}
#
### additional overlaps before doing the intersection analysis
#geneLists %>% count(list_id) %>% kable()
#
#intersectLists <- function(geneLists, listIdA, listIdB, intersectListId) {
# commonGenes <- setdiff(filter(geneLists, list_id==listIdA)$ensembl_gene_id, filter(geneLists, list_id==listIdB)$ensembl_gene_id)
# data.frame(list_id=intersectListId, ensembl_gene_id=commonGenes)
#}
#
#geneLists %<>% group_by(list_id)
#save(geneLists, file=".enrGeneLists.RData")
## geneLists <- local(get(load("enrGeneLists.RData")))
#
#
### redefine opts arguments and tweak knitr options
#opts_knit$set(root.dir = getwd())
#commandArgs <- function(x) c(paste("--overlay_expr_data ", count_matrix_file, " enrGeneLists.RData"))
##source("/home/brandl/mnt/mack/bioinfo/scripts/ngs_tools/dev/common/david_enrichment.R")
## child='/home/brandl/mnt/mack/bioinfo/scripts/ngs_tools/dev/common/david_enrichment.Rmd'