Newer
Older
/*
* CartDecomposition.hpp
*
* Created on: Aug 15, 2014
* Author: Pietro Incardona
*/
#ifndef CARTDECOMPOSITION_HPP
#define CARTDECOMPOSITION_HPP
#include "config.h"
#include "VCluster.hpp"
#include "Graph/CartesianGraphFactory.hpp"
#include <vector>
#include <initializer_list>
#include "SubdomainGraphNodes.hpp"
#include "metis_util.hpp"
#include "dec_optimizer.hpp"
#include "Space/Shape/Box.hpp"
#include <unordered_map>
#include "NN/CellList/CellList.hpp"
#include "common.hpp"
#include "ie_loc_ghost.hpp"
#include "ie_ghost.hpp"
#include "nn_processor.hpp"
#include "util/mathutil.hpp"
#define CARTDEC_ERROR 2000lu
/**
* \brief This class decompose a space into subspaces
*
* \tparam dim is the dimensionality of the physical domain we are going to decompose.
* \tparam T type of the space we decompose, Real, Integer, Complex ...
* \tparam Memory Memory factory used to allocate memory
*
* Given an N-dimensional space, this class decompose the space into a Cartesian grid of small
* sub-sub-domain. To each sub-sub-domain is assigned an id that identify at which processor is
* assigned (in general the union of all the sub-sub-domain assigned to a processor is
* simply connected space), a second step merge several sub-sub-domain with same id into bigger region
* sub-domain. Each sub-domain has an extended space called ghost part
*
* Assuming that VCluster.getProcessUnitID(), equivalent to the MPI processor rank, return the processor local
* processor id, we define
*
* * local processor: processor rank
* * local sub-domain: sub-domain given to the local processor
* * external ghost box: (or ghost box) are the boxes that compose the ghost space of the processor, or the
* boxes produced expanding every local sub-domain by the ghost extension and intersecting with the sub-domain
* of the other processors
* * Near processors are the processors adjacent to the local processor, where with adjacent we mean all the processor
* that has a non-zero intersection with the ghost part of the local processor, or all the processors that
* produce non-zero external boxes with the local processor, or all the processor that should communicate
* in case of ghost data synchronization
* * internal ghost box: is the part of ghost of the near processor that intersect the space of the
* processor, or the boxes produced expanding the sub-domain of the near processors with the local sub-domain
* * Near processor sub-domain: is a sub-domain that live in the a near (or contiguous) processor
* * Near processor list: the list of all the near processor of the local processor (each processor has a list
* of the near processor)
* * Local ghosts interal or external are all the ghosts that does not involve inter-processor communications
*
* \see calculateGhostBoxes() for a visualization of internal and external ghost boxes
* ### Create a Cartesian decomposition object on a Box space, distribute, calculate internal and external ghost boxes
* \snippet CartDecomposition_unit_test.hpp Create CartDecomposition
*
template<unsigned int dim, typename T, typename Memory=HeapMemory>
class CartDecomposition : public ie_loc_ghost<dim,T>, public nn_prcs<dim,T> , public ie_ghost<dim,T>
//! Type of the domain we are going to decompose
typedef T domain_type;
//! It simplify to access the SpaceBox element
typedef SpaceBox<dim,T> Box;
private:
//! This is the key type to access data_s, for example in the case of vector
typedef typename openfpm::vector<SpaceBox<dim,T>,Memory,openfpm::vector_grow_policy_default,openfpm::vect_isel<SpaceBox<dim,T>>::value >::access_key acc_key;
openfpm::vector<SpaceBox<dim,T>> sub_domains;
//! for each sub-domain, contain the list of the neighborhood processors
openfpm::vector<openfpm::vector<long unsigned int> > box_nn_processor;
//! Structure that contain for each sub-sub-domain box the processor id
//! Structure that store the cartesian grid information
grid_sm<dim,void> gr;
//! Structure that decompose your structure into cell without creating them
//! useful to convert positions to CellId or sub-domain id in this case
CellDecomposer_sm<dim,T> cd;
//! Box Spacing
T spacing[dim];
//! Runtime virtual cluster machine
Vcluster & v_cl;
// Smallest subdivision on each direction
::Box<dim,T> ss_box;
::Box<dim,T> bbox;
// Heap memory receiver
HeapMemory hp_recv;
// vector v_proc
openfpm::vector<size_t> v_proc;
// reference counter of the object in case is shared between object
long int ref_cnt;
Ghost<dim,T> ghost;
// Boundary condition info
size_t bc[dim];
/*! \brief Constructor, it decompose and distribute the sub-domains across the processors
* \param v_cl Virtual cluster, used internally for communications
void CreateDecomposition(Vcluster & v_cl, const size_t (& bc)[dim])
#ifdef SE_CLASS1
if (&v_cl == NULL)
{
std::cerr << __FILE__ << ":" << __LINE__ << " error VCluster instance is null, check that you ever initialized it \n";
ACTION_ON_ERROR()
}
#endif
// Calculate the total number of box and and the spacing
// on each direction
// Get the box containing the domain
SpaceBox<dim,T> bs = domain.getBox();
for (unsigned int i = 0; i < dim ; i++)
{
// Calculate the spacing
spacing[i] = (bs.getHigh(i) - bs.getLow(i)) / gr.size(i);
}
// Here we use METIS
// Create a cartesian grid graph
CartesianGraphFactory<dim,Graph_CSR<nm_part_v,nm_part_e>> g_factory_part;
// the graph has only non perdiodic boundary conditions
size_t bc_o[dim];
for (size_t i = 0 ; i < dim ; i++)
bc_o[i] = NON_PERIODIC;
Graph_CSR<nm_part_v,nm_part_e> gp = g_factory_part.template construct<NO_EDGE,T,dim-1>(gr.getSize(),domain,bc_o);
// Get the number of processing units
size_t Np = v_cl.getProcessingUnits();
// Get the processor id
long int p_id = v_cl.getProcessUnitID();
// Convert the graph to metis
Metis<Graph_CSR<nm_part_v,nm_part_e>> met(gp,Np);
// fill the structure that store the processor id for each sub-domain
// Optimize the decomposition creating bigger spaces
// And reducing Ghost over-stress
dec_optimizer<dim,Graph_CSR<nm_part_v,nm_part_e>> d_o(gp,gr.getSize());
// set of Boxes produced by the decomposition optimizer
openfpm::vector<::Box<dim,size_t>> loc_box;
d_o.template optimize<nm_part_v::sub_id,nm_part_v::id>(gp,p_id,loc_box,box_nn_processor,bc);
// Initialize ss_box and bbox
if (loc_box.size() >= 0)
{
SpaceBox<dim,size_t> sub_dc = loc_box.get(0);
SpaceBox<dim,T> sub_d(sub_dc);
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
ss_box = sub_d;
for (size_t s = 1 ; s < loc_box.size() ; s++)
SpaceBox<dim,size_t> sub_dc = loc_box.get(s);
SpaceBox<dim,T> sub_d(sub_dc);
// re-scale and add spacing (the end is the starting point of the next domain + spacing)
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
// Calculate the bound box
bbox.enclose(sub_d);
// Create the smallest box contained in all sub-domain
ss_box.contained(sub_d);
nn_prcs<dim,T>::create(box_nn_processor, sub_domains);
nn_prcs<dim,T>::refine_ss_box(ss_box);
// fine_s structure contain the processor id for each sub-sub-domain
// with sub-sub-domain we mean the sub-domain decomposition before
// running dec_optimizer (before merging sub-domains)
auto it = gp.getVertexIterator();
while (it.isNext())
{
size_t key = it.get();
// fill with the fine decomposition
fine_s.get(key) = gp.template vertex_p<nm_part_v::id>(key);
++it;
}
Initialize_geo_cell_lists();
}
/*! \brief Initialize geo_cell lists
*
*
*
*/
void Initialize_geo_cell_lists()
{
// Get the smallest sub-division on each direction
::Box<dim,T> unit = getSmallestSubdivision();
// Get the processor bounding Box
::Box<dim,T> bound = getProcessorBounds();
// Not necessary, but I prefer
bound.enlarge(ghost);
size_t div[dim];
for (size_t i = 0 ; i < dim ; i++)
div[i] = (size_t)((bound.getHigh(i) - bound.getLow(i)) / unit.getHigh(i));
// Create shift
Point<dim,T> orig;
// p1 point of the Processor bound box is the shift
for (size_t i = 0 ; i < dim ; i++)
orig.get(i) = bound.getLow(i);
// Initialize the geo_cell structure
ie_ghost<dim,T>::Initialize_geo_cell(bound,div,orig);
// Initialize shift vectors
ie_ghost<dim,T>::generateShiftVectors(domain);
}
/*! \brief Create the subspaces that decompose your domain
*
*/
void CreateSubspaces()
{
// Create a grid where each point is a space
grid_sm<dim,void> g(div);
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// create a grid_key_dx iterator
grid_key_dx_iterator<dim> gk_it(g);
// Divide the space into subspaces
while (gk_it.isNext())
{
//! iterate through all subspaces
grid_key_dx<dim> key = gk_it.get();
//! Create a new subspace
SpaceBox<dim,T> tmp;
//! fill with the Margin of the box
for (int i = 0 ; i < dim ; i++)
{
tmp.setHigh(i,(key.get(i)+1)*spacing[i]);
tmp.setLow(i,key.get(i)*spacing[i]);
}
//! add the space box
sub_domains.add(tmp);
// add the iterator
++gk_it;
}
}
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*! \brief It copy the sub-domains into another CartesianDecomposition object extending them
*
* \see duplicate (in case of extended domain)
*
* \param cart Cartesian decomposition object
* \param box Extended domain
*
*/
void extend_subdomains(CartDecomposition<dim,T> & cart, const ::Box<dim,T> & ext_dom) const
{
// Box
typedef ::Box<dim,T> b;
cart.bbox = ext_dom;
cart.ss_box = ext_dom;
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
::Box<dim,T> box;
// Calculate the extended box
for (size_t j = 0 ; j < dim ; j++)
{
if (sub_domains.template get<b::p1>(i)[j] == domain.getLow(j))
box.setLow(j,ext_dom.getLow(j));
else
box.setLow(j,sub_domains.template get<b::p1>(i)[j]);
if (sub_domains.template get<b::p2>(i)[j] == domain.getHigh(j))
box.setHigh(j,ext_dom.getHigh(j));
else
box.setHigh(j,sub_domains.template get<b::p2>(i)[j]);
}
// add the subdomain
cart.sub_domains.add(box);
// Calculate the bound box
cart.bbox.enclose(box);
// Create the smallest box contained in all sub-domain
cart.ss_box.contained(box);
}
}
/*! \brief Extend the fines for the new Cartesian decomposition
*
* \param new_fines extended fine_s
* \param old_fines old fine_s
*
*/
void extend_fines(CartDecomposition<dim,T> & cart) const
{
// Extension, first we calculate the extensions of the new domain compared
// to the old one in cell units (each cell unit is a sub-sub-domain)
::Box<dim,size_t> ext;
// Extension of the new fines structure
::Box<dim,size_t> n_fines_ext;
// Extension of the old fines structure
::Box<dim,size_t> o_fines_ext;
size_t sz_new[dim];
size_t sz_old[dim];
for (size_t i = 0; i < dim ; i++)
{
size_t p1 = (domain.getLow(i) - this->domain.getLow(i)) / cd.getCellBox().getHigh(i) + 1;
size_t p2 = (domain.getLow(i) - this->domain.getLow(i)) / cd.getCellBox().getHigh(i) + 1;
ext.setLow(i,p1);
ext.setHigh(i,p2);
sz_new[i] = p1+p2+cd.getGrid().size(i);
sz_old[i] = cd.getGrid().size(i);
}
grid_sm<dim,void> info_new(sz_new);
grid_sm<dim,void> info_old(sz_old);
// resize the new fines
cart.fine_s.resize(info_new.size());
// we create an iterator that iterate across the full new fines
grid_key_dx_iterator<dim> fines_t(info_new);
while (fines_t.isNext())
{
auto key = fines_t.get();
// new_fines is bigger than old_fines structure
// out of bound key must be adjusted
// The adjustment produce a natural extension
// a representation can be seen in the figure of
// CartDecomposition duplicate function with extended domains
grid_key_dx<dim> key_old;
for (size_t i = 0 ; i < dim ; i++)
{
key_old.set_d(i,(long int)key.get(i) - ext.getLow(i));
if (key_old.get(i) < 0)
key_old.set_d(i,0);
else if(key_old.get(i) >= (long int)info_old.size(i) )
key_old.set_d(i,info_old.size(i)-1);
}
cart.fine_s.get(info_new.LinId(key)) = fine_s.get(info_old.LinId(key_old));
++fines_t;
}
cart.gr.setDimensions(sz_new);
// the new extended CellDecomposer must be consistent with the old cellDecomposer.
cart.cd.setDimensions(cd,ext);
}
static constexpr int dims = dim;
typedef T stype;
//! Increment the reference counter
void incRef()
{ref_cnt++;}
//! Decrement the reference counter
void decRef()
{ref_cnt--;}
//! Return the reference counter
long int ref()
{
return ref_cnt;
}
/*! \brief Cartesian decomposition constructor
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
CartDecomposition(Vcluster & v_cl)
:nn_prcs<dim,T>(v_cl),v_cl(v_cl),ref_cnt(0)
{
// Reset the box to zero
bbox.zero();
}
/*! \brief Cartesian decomposition copy constructor
*
* \param cart object to copy
*
*/
CartDecomposition(const CartDecomposition<dim,T,Memory> & cart)
:nn_prcs<dim,T>(cart.v_cl),v_cl(cart.v_cl),ref_cnt(0)
{
this->operator=(cart);
}
/*! \brief Cartesian decomposition copy constructor
*
* \param cart object to copy
*
*/
CartDecomposition(CartDecomposition<dim,T,Memory> && cart)
:nn_prcs<dim,T>(cart.v_cl),v_cl(cart.v_cl),ref_cnt(0)
{
this->operator=(cart);
}
//! Cartesian decomposition destructor
~CartDecomposition()
{}
/*! \brief class to select the returned id by ghost_processorID
*
*/
class box_id
{
public:
/*! \brief Return the box id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return box id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return b_id;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class processor_id
{
public:
/*! \brief Return the processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return processor id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return p.proc;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class lc_processor_id
{
public:
/*! \brief Return the near processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return local processor id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return p.lc_proc;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class shift_id
{
public:
/*! \brief Return the shift id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return shift_id id
*
*/
inline static size_t id(p_box<dim,T> & p, size_t b_id)
{
return p.shift_id;
}
};
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*! \brief Apply boundary condition to the point
*
* \param p Point to apply the boundary condition
*
*/
void applyPointBC(float (& pt)[dim]) const
{
for (size_t i = 0 ; i < dim ; i++)
{
if (bc[i] == PERIODIC)
pt[i] = openfpm::math::periodic_l(pt[i],domain.getHigh(i),domain.getLow(i));
}
}
/*! \brief Apply boundary condition to the point
*
* \param p Point to apply the boundary condition
*
*/
void applyPointBC(Point<dim,T> & pt) const
{
for (size_t i = 0 ; i < dim ; i++)
{
if (bc[i] == PERIODIC)
pt.get(i) = openfpm::math::periodic_l(pt.get(i),domain.getHigh(i),domain.getLow(i));
}
}
/*! \brief Apply boundary condition to the point
*
* \param encapsulated object
*
*/
template<typename Mem> void applyPointBC(encapc<1,Point<dim,T>,Mem> && pt) const
{
for (size_t i = 0 ; i < dim ; i++)
{
if (bc[i] == PERIODIC)
pt.template get<0>()[i] = openfpm::math::periodic_l(pt.template get<0>()[i],domain.getHigh(i),domain.getLow(i));
}
}
*
* Example: Processor 10 calculate
* B8_0 B9_0 B9_1 and B5_0
*
*
+----------------------------------------------------+
| |
| Processor 8 |
| | |
| | |
++--------------+---+---------------------------+----+ Processor 9 |
| | | B8_0 | | Subdomain 0 |
| +------------------------------------+ |
| | | | | |
| | | |B9_0| |
| | B | Local processor | | |
| Processor 5 | 5 | Subdomain 0 | | |
| Subdomain 0 | _ | +----------------------------------------+
| | 0 | | | |
| | | | | |
| | | | | Processor 9 |
| | | |B9_1| Subdomain 1 |
| | | | | |
| | | | | |
| | | | | |
+--------------+---+---------------------------+----+ |
| |
+-----------------------------------+
+----------------------------------------------------+
| Processor 8 |
| Subdomain 0 +-----------------------------------+
| | |
| +---------------------------------------------+ |
| | G8_0 | | |
+-----+---------------+------------------------------------+ | Processor 9 |
| | | | | Subdomain 0 |
| | | |G9_0| |
| | | | | |
| | | | | |
| | | Local processor | | |
| Processor 5 | | Sub+domain 0 | | |
| Subdomain 0 | | +-----------------------------------+
| | | | | |
| | G | | | |
| | 5 | | | Processor 9 |
| | | | | | Subdomain 1 |
| | 0 | |G9_1| |
| | | | | |
| | | | | |
+---------------------+------------------------------------+ | |
| | | |
+----------------------------------------+----+------------------------------+
*
*
*
* \param ghost margins for each dimensions (p1 negative part) (p2 positive part)
*
^ p2[1]
|
|
+----+----+
| |
| |
p1[0]<-----+ +----> p2[0]
| |
| |
+----+----+
|
v p1[1]
{
#ifdef DEBUG
// the ghost margins are assumed to be smaller
// than one sub-domain
for (size_t i = 0 ; i < dim ; i++)
{
if (fabs(ghost.template getLow(i)) >= ss_box.getHigh(i) || ghost.template getHigh(i) >= ss_box.getHigh(i))
std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " : Ghost are bigger than one sub-domain" << "\n";
}
}
#endif
// Intersect all the local sub-domains with the sub-domains of the contiguous processors
// create the internal structures that store ghost information
ie_ghost<dim,T>::create_box_nn_processor_ext(v_cl,ghost,sub_domains,box_nn_processor,*this);
ie_ghost<dim,T>::create_box_nn_processor_int(v_cl,ghost,sub_domains,box_nn_processor,*this);
// ebox must come after ibox (in this case)
ie_loc_ghost<dim,T>::create(sub_domains,domain,ghost,bc);
// get the smallest sub-domain dimension on each direction
for (size_t i = 0 ; i < dim ; i++)
{
if (fabs(ghost.template getLow(i)) >= ss_box.getHigh(i) || ghost.template getHigh(i) >= ss_box.getHigh(i))
std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " : Ghost are bigger than one sub-domain" << "\n";
/*! \brief It create another object that contain the same decomposition information but with different ghost boxes
*
* \param g ghost
*
* \return a duplicated decomposition with different ghost boxes
*
*/
CartDecomposition<dim,T,Memory> duplicate(const Ghost<dim,T> & g) const
cart.box_nn_processor = box_nn_processor;
cart.sub_domains = sub_domains;
cart.fine_s = fine_s;
cart.gr = gr;
cart.cd = cd;
cart.domain = domain;
std::copy(spacing,spacing+3,cart.spacing);
//! Runtime virtual cluster
cart.v_cl = v_cl;
cart.bbox = bbox;
cart.ss_box = ss_box;
cart.ghost = g;
for (size_t i = 0 ; i < dim ; i++)
cart.bc[i] = bc[i];
(static_cast<nn_prcs<dim,T> &>(cart)).create(box_nn_processor, sub_domains);
(static_cast<nn_prcs<dim,T> &>(cart)).applyBC(domain,ghost,bc);
cart.Initialize_geo_cell_lists();
cart.calculateGhostBoxes();
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/*! \brief It create another object that contain the same decomposition information but with different ghost boxes and an extended domain
*
* The domain extension is produced extending the boxes at the border like in figure
*
* \verbatim
*
+--------------^--------^----------^----------+
| | | | |
| A | E | F | N |
| +-----------------------------------+---->
| | | | | | |
| A | A | | F | | |
| | | | | | |
| | | E +----------+ N | N |
<--------------+ | | | |
| | | | | | |
| | | | G | | |
| | | | +---------->
| B | B | +----------+ | |
| | +--------+ | M | M |
| | | | H | | |
| | | +-----+----+---------->
<--------------+ D | | | |
| | | | I | L | L |
| C | C | | | | |
| | | | | | |
| +-----------------------------------+ |
| | | | |
| C | D | I | L |
+--------------v--------v-----v---------------+
*
* \endverbatim
*
* \param g ghost
* \param domain extended domain (MUST be extended)
*
* \return a duplicated decomposition with different ghost boxes and an extended domain
*
*/
CartDecomposition<dim,T,Memory> duplicate(const Ghost<dim,T> & g, const ::Box<dim,T> & ext_domain) const
{
CartDecomposition<dim,T,Memory> cart(v_cl);
cart.box_nn_processor = box_nn_processor;
// Calculate new sub-domains for extended domain
extend_subdomains(cart,ext_domain);
// Calculate fine_s structure for the extended domain
// update the cell decomposer and gr
extend_fines(cart);
// Get the old sub-sub-domain grid extension
cart.domain = ext_domain;
// spacing does not change
std::copy(spacing,spacing+3,cart.spacing);
//! Runtime virtual cluster
cart.v_cl = v_cl;
cart.ghost = g;
for (size_t i = 0 ; i < dim ; i++)
cart.bc[i] = bc[i];
(static_cast<nn_prcs<dim,T> &>(cart)).create(cart.box_nn_processor, cart.sub_domains);
(static_cast<nn_prcs<dim,T> &>(cart)).applyBC(ext_domain,ghost,bc);
cart.Initialize_geo_cell_lists();
cart.calculateGhostBoxes();
return cart;
}
/*! \brief It create another object that contain the same information and act in the same way
*
* \return a duplicated decomposition
*
*/
CartDecomposition<dim,T,Memory> duplicate() const
(static_cast<ie_loc_ghost<dim,T>*>(&cart))->operator=(static_cast<ie_loc_ghost<dim,T>>(*this));
(static_cast<nn_prcs<dim,T>*>(&cart))->operator=(static_cast<nn_prcs<dim,T>>(*this));
(static_cast<ie_ghost<dim,T>*>(&cart))->operator=(static_cast<ie_ghost<dim,T>>(*this));
cart.sub_domains = sub_domains;
cart.box_nn_processor = box_nn_processor;
cart.fine_s = fine_s;
cart.gr = gr;
cart.cd = cd;
cart.domain = domain;
std::copy(spacing,spacing+3,cart.spacing);
//! Runtime virtual cluster
cart.v_cl = v_cl;
cart.ghost = ghost;
cart.bbox = bbox;
cart.ss_box = ss_box;
for (size_t i = 0 ; i < dim ; i++)
cart.bc[i] = this->bc[i];
return cart;
}
/*! \brief Copy the element
*
* \param cart element to copy
*
*/
CartDecomposition<dim,T,Memory> & operator=(const CartDecomposition & cart)
{
static_cast<ie_loc_ghost<dim,T>*>(this)->operator=(static_cast<ie_loc_ghost<dim,T>>(cart));
static_cast<nn_prcs<dim,T>*>(this)->operator=(static_cast<nn_prcs<dim,T>>(cart));
static_cast<ie_ghost<dim,T>*>(this)->operator=(static_cast<ie_ghost<dim,T>>(cart));
sub_domains = cart.sub_domains;
box_nn_processor = cart.box_nn_processor;
fine_s = cart.fine_s;
gr = cart.gr;
cd = cart.cd;
domain = cart.domain;
std::copy(cart.spacing,cart.spacing+3,spacing);
//! Runtime virtual cluster
v_cl = cart.v_cl;
ghost = cart.ghost;
bbox = cart.bbox;
ss_box = cart.ss_box;
for (size_t i = 0 ; i < dim ; i++)
bc[i] = cart.bc[i];
return *this;
}
/*! \brief Copy the element, move semantic
*
* \param cart element to copy
*
*/
CartDecomposition<dim,T,Memory> & operator=(CartDecomposition && cart)
{
static_cast<ie_loc_ghost<dim,T>*>(this)->operator=(static_cast<ie_loc_ghost<dim,T>*>(cart));
static_cast<nn_prcs<dim,T>*>(this)->operator=(static_cast<nn_prcs<dim,T>*>(cart));
static_cast<ie_ghost<dim,T>*>(this)->operator=(static_cast<ie_ghost<dim,T>*>(cart));
sub_domains.swap(cart.sub_domains);
box_nn_processor.swap(cart.box_nn_processor);
fine_s.swap(cart.fine_s);
gr = cart.gr;
cd = cart.cd;
domain = cart.domain;
std::copy(cart.spacing,cart.spacing+3,spacing);
//! Runtime virtual cluster
v_cl = cart.v_cl;
ghost = cart.ghost;
cart.bbox = bbox;
cart.ss_box = ss_box;
for (size_t i = 0 ; i < dim ; i++)
cart.bc[i] = bc[i];
return *this;
}
/*! \brief The default grid size
*
* The default grid is always an isotropic grid that adapt with the number of processors,
* it define in how many cell it will be divided the space for a particular required minimum
* number of sub-domain